
UNIVERSITA' DEGLI STUDI DI CATANIA

Facolta' di Scienze Matematiche, Fisiche e Naturali

Corso di Laurea In Informatica

GUASTELLA MARCO

PROGETTAZIONE E IMPLEMENTAZIONE DI UN

SIMULATORE DI RETI PARALLELO

Tesi di Laurea

RELATORI:
Prof. Ing. S. Riccobene
Dott. G. Costantino

Anno Accademico 2008/2009

Indice

1 Introduzione 1
1.1 Sistemi di calcolo . 1
1.2 Grid Computing . 3
1.3 MPI . 4

1.3.1 Le comunicazioni point-to-point 6
1.3.2 Le comunicazioni collettive 8

1.4 Introduzione alla simulazione 9
1.5 Motivazioni della ricerca . 10
1.6 Organizzazione tesi . 10

2 Modelli di simulazione 12
2.1 Sistemi e modelli . 12
2.2 Descrizione dei modelli di simulazione 14
2.3 Progettazione di un modello di simulazione 15
2.4 Discrete Event Simulation . 16
2.5 Modello di esempio DES con scheduling di eventi 17

3 Programmazione parallela 30
3.1 De�nizione di programmazione parallela 30
3.2 Legge di Amdahl . 31
3.3 Regole per parallelizzare . 33
3.4 Tecniche di parallelizzazione 35

3.4.1 Parallelizzazione cicli 35
3.4.2 Grana grossa contro grana �ne 37
3.4.3 Operazioni di input . 39
3.4.4 Operazioni di output 39
3.4.5 Metodi di comunicazione 39

3.5 PDES . 40
3.5.1 Distribuzione del carico 41
3.5.2 Modello di sincronizzazione conservativo 45
3.5.3 Modello di sincronizzazione ottimistico 47

I

3.5.4 Considerazioni sui modelli conservativi e ottimistici . . 50
3.5.5 Modelli Ibridi . 52

4 NS 53
4.1 Le basi di Ns . 53
4.2 La classe Simulator . 54
4.3 La gestione dei pacchetti . 55
4.4 Lo Schedulatore di eventi . 58
4.5 Gli Ns-Object . 60

4.5.1 Connector . 61
4.5.2 BiConnector . 61
4.5.3 Agent . 62
4.5.4 Queue . 64
4.5.5 errorModel . 65
4.5.6 LinkDelay . 66

4.6 Node . 66
4.6.1 Classi�er . 67
4.6.2 Routing . 68

4.7 Simplex Link . 68

5 Pdnet 70
5.1 Motivazioni . 70
5.2 Struttura . 71

5.2.1 Scheduler . 72
5.2.2 Container . 73
5.2.3 SObject . 74
5.2.4 Object . 74
5.2.5 Regole per la creazione di strutture 75

5.3 Packet . 75
5.4 Event e schedulazioni . 80
5.5 Node . 82
5.6 routing e demux . 83
5.7 SimplexLink e Netcard . 86
5.8 Agent . 88

5.8.1 UdpAgent . 90
5.8.2 TcpAgent e TcpAgentListener 91

5.9 Application . 94
5.10 Creare una simulazione in Pdnet 94

II

6 Scheduler parallelo in Pdnet 97
6.1 Impacchettamento e spacchettamento dei messaggi remoti . . 97
6.2 Una tecnica di parallelizzazione centralizzata 98
6.3 Implementazione dello Scheduler parallelo centralizzato in Pdnet101
6.4 Performance e valutazioni dell'esperimento 105

6.4.1 Modello di esempio per l'esperimento 105
6.4.2 Bilancio sugli eventi parallelizzabili 107
6.4.3 Impatto temporale sulla simulazione 109
6.4.4 Considerazioni sui risultati 109

7 Conclusioni 111

Bibliogra�a A

III

Elenco delle �gure

1.1 Architetture di calcolo . 1
1.2 Grid . 4
1.3 MPI_COMM_WORLD . 5

2.1 Rappresentazione di un Sistema 12
2.2 Sistema simulato . 18

3.1 Frazione di codice parallelizzabile 31
3.2 Legge di Amdahl . 32
3.3 Metodo di comunicazione a catena 40
3.4 Clustering gerarchico . 44
3.5 Calcolo Eot ed Ecot in un modello di simulazione parallelo . . 48

4.1 Architettura di ns . 53
4.2 Nodo unicast . 67
4.3 Simplex Link . 69

5.1 Struttura Pdnet . 71
5.2 Comunicazione diretta . 80
5.3 Esempio struttura nodo . 84

6.1 Strategia centralizzata . 100
6.2 Modello di esempio . 106
6.3 Eventi eseguiti dagli LP nel modello di esempio 107

IV

Elenco delle tabelle

6.1 Link modello di esempio . 106
6.2 Applicazioni modello di esempio 107
6.3 Eventi totali eseguiti dalle simulazioni nel modello di esempio 108
6.4 Percentuale remote positive nel modello di esempio 108
6.5 Lunghezza media code nel modello di esempio 109

V

Capitolo 1

Introduzione

1.1 Sistemi di calcolo

Nel 1966 Michael J. Flynn classi�ca i sistemi di calcolo a seconda della
molteplicità del �usso di istruzioni e del �usso dei dati che possono gestire; in
seguito questa classi�cazione è stata estesa con una sottoclassi�cazione per
considerare anche il tipo di architettura della memoria. In base a questa clas-
si�cazione ogni sistema di calcolo rientra in una delle categorie rappresentate
in �gura 1.1.

Figura 1.1: Architetture di calcolo

1

SISD

Single Istruction Single Data è un'architettura dove non c'è nessun par-
allelismo e le operazioni vengono eseguite sequenzialmente su un dato alla
volta. E' la classica architettura di Von Neumann.

SIMD

Single Instruction Multiple Data è un'architettura in cui più unità elab-
orano dati diversi in parallelo. Questa architettura viene utilizzata da pro-
cessori vettoriali o da processori che funzionano in parallelo. La SIMD è
spesso usata dai supercomputer e con alcune varianti anche nei moderni mi-
croprocessori. Le istruzioni SIMD sono progettate per manipolare elevate
quantità di dati in parallelo e per le usuali operazioni si appoggiano ad un
altro insieme di istruzioni usualmente gestito dal microprocessore.

MISD

Multiple Instruction Single Data è un'architettura parallela in cui di-
verse unità e�ettuano diverse elaborazioni sugli stessi dati. Attualmente non
esistono macchine MISD. Sono stati sviluppati alcuni progetti di ricerca ma
non esistono processori commerciali che ricadono in questa categoria.

MIMD

Multiple Instruction Multiple Data è un'architettura parallela in cui
diverse unità e�ettuano diverse elaborazioni su dati diversi.
Nello schema principale della classi�cazone di Flynn questa architettura ha
una sotto classi�cazione:

1. Sistemi a memoria distribuita: ogni nodo ha una propria memoria ris-
ervata e se deve accedere ai dati memorizzati in un altro nodo deve
farne richiesta attraverso uno scambio di messaggi tra i nodi;

2. Sistemi a memoria condivisa: più unità di calcolo pur eseguendo pro-
grammi di�erenti accedono alla stessa memoria;

3. Macchine data�ow : utilizzano un approccio data-driven dove le com-
putazioni vengono eseguite solamente quando i dati delle elaborazioni
sono disponibili;

4. Macchine a riduzione: utilizzano un approcio demand-driven dove le
computazioni vengono eseguite solamente se vi è una richiesta dei dati
da elaborare.

2

1.2 Grid Computing

Il termine Grid computing (letteralmente �calcolo a griglia�) sta ad indi-
care un paradigma del calcolo distribuito costituito da un'infrastruttura alta-
mente decentralizzata e di natura variegata in grado di consentire ad un vasto
numero di utenti l'utilizzo di risorse (prevalentemente CPU e storage) prove-
nienti da un numero indistinto di calcolatori (anche e soprattutto di potenza
non particolarmente elevata) interconnessi da una rete (solitamente, ma non
necessariamente, Internet). Il termine griglia deriva dalla similitudine fatta
dai primi ideatori del Grid Computing secondo i quali in un prossimo futuro
si sarebbe arrivati a poter reperire risorse di calcolo con la stessa facilita' con
la quale oggi si puo' usufruire dell'energia elettrica, ovvero semplicemente at-
taccandosi ad una delle tante prese presenti nel nostro appartamento (Power
grid). Le prime de�nizioni di Grid computing, di cui si sente spesso par-
lare come della prossima rivoluzione dell'informatica (come a suo tempo fu
il World Wide Web), risalgono di fatto a circa metà degli anni Novanta. Le
'griglie di calcolo' vengono prevalentemente utilizzate per risolvere problemi
computazionali di larga scala in ambito scienti�co e ingegneristico (la cosid-
detta e-Science). Sviluppatasi originariamente in seno alla �sica delle alte
energie (in inglese HEP = High Energy Physics), il loro impiego è già da
oggi esteso alla biologia, all'astronomia e in maniera minore anche ad altri
settori. Una grid è in grado di fornire agli utenti di un gruppo scalabile senza
una particolare caratterizzazione geogra�ca ne tantomeno istituzionale (ger-
galmente detto Virtual Organization, VO) la potenzialità di accedere alla
capacità di calcolo e di memoria di un sistema distribuito, garantendo un
accesso coordinato e controllato alle risorse condivise e o�rendo all'utente la
visibilità di un unico sistema di calcolo logico cui sottomettere i propri job.
L'idea del Grid computing è scaturita dalla constatazione che in media l'u-
tilizzo delle risorse informatiche di una organizzazione è pari al 5% della sua
reale potenzialità. Le risorse necessarie sarebbero messe a disposizione da
varie entità in modo da creare un'organizzazione virtuale con a disposizione
un'infrastruttura migliore di quella che la singola entità potrebbe sostenere.
Un altro importante fenomeno da evidenziare è la nascita accanto alle grandi
GRID nazionali ed internazionali, di molteplici implementazioni su scala lo-
cale o metropolitana di sistemi distribuiti che mantengono le caratteristiche
di una GRID. Tali sistemi vengono indicati con i termini Local Area Grid
(LAG) eMetropolitan Area Grid (MAG) o Metropolitan Grid con chiaro
riferimento alla classi�cazione introdotta nell'ambito del network. Come la
coordinazione di Grid nazionali prevede la futura costituzione di un world
wide Grid, le implementazioni di Grid locali o Metropolitane si avvicinano
al mondo delle Intranet. Esse infatti forniscono un tipo di infrastuttura che

3

più semplicemente può essere integrata per l'introduzione del computing dis-
tribuito in ambito aziendale.
Un esempio di Grid è dato dalla Figura 1.2. In questo esempio si nota che
l'user si connette ad un broker che gestisce le risorse. Il broker assegna le
risorse all'user ma quest'ultimo non sà dove sono localizzate. Quindi l'user
vede la griglia come un sistema unico.

Figura 1.2: Grid

1.3 MPI

MPI (Message Passing Interface) è una speci�ca e portatile interfaccia per
scrivere programmi message-passing, ed ha lo scopo di essere pratica, e�-
ciente e �essibile per molto tempo.
Lo standard include:

• comunicazioni point-to-point;

• operazioni collettive;

• gruppi di processi;

• ambiente di comunicazione;

4

• processi topologici;

• bindings per Fortran77 e C++;

• gestione e richiesta informazioni;

• interfaccia del pro�lo.

Questo paragrafo parla delle librerie MPI in C++ dove per utilizzarle bisogna
includere nel listato il �le �mpi.h�.
MPI usa oggetti chiamati comunicatori e gruppi per de�nire la collezione
di processi che possono comunicare tra loro. Per un uso semplice possi-
amo utilizzare il comunicatore MPI_COMM_WORLD che comprende tutti
i processi attivi per l'applicazione. Tramite un comunicatore ad ogni pro-
cesso viene assegnato un unico identi�catore chiamato Rank. I Ranks sono
numeri interi che vanno da 0 a n − 1, dove n è il numero di processi attivi
per l'applicazione, che vengono utilizzati dal programmatore per speci�care
la sorgente e la destinazione dei messaggi.
Gli MPI environment management routines sono utilizzati per inzial-

Figura 1.3: MPI_COMM_WORLD

izzare , terminare, indagare e identi�care l'ambiente MPI. Alcune di queste
routine sono le seguenti:

• MPI_Init(int *argc,char **argv) inizializza l'esecuzione dell'ambiente
MPI;

5

• MPI_Comm_size(MPI_Comm com,int *size) memorizza in size il nu-
mero di processi assegnati al comunicatore com;

• MPI_Comm_rank(MPI_Comm com,int *rank) memorizza in rank il
range del processo che la esegue rispetto al comunicatore com;

• MPI_Abort(MPI_Comm com,int errorcode) forza tutti i processi as-
segnati al comunicatore com a terminare con codice di errore errorcode;

• MPI_Finalize() termina l'esecuzione MPI.

Lo scambio di dati tra i vari processi si ha tramite lo scambio di messaggi.
Per identi�care i tipi di dato da scambiare si utilizzano gliMPI_Datatype. Si
possono utilizzare i datatype già esistenti come MPI_INT, MPI_DOUBLE
oppure de�nirne dei nuovi. Un datatype particolare è MPI_PACKED che
identi�ca un tipo di dato eterogeneo. Per utilizzare MPI_PACKED bisogna
impacchettare i dati in un vettore e spacchettarli dopo lo scambio tramite le
funzioni MPI_Pack() e MPI_Unpack().
Alcune comunicazioni possono utilizzare la struttura MPI_Status che iden-
ti�ca il suo stato:

typede f s t r u c t {
i n t count ;
i n t MPI_SOURCE;
i n t MPI_TAG;
i n t MPI_ERROR;

#i f (MPI_STATUS_SIZE > 4)
i n t ext ra [MPI_STATUS_SIZE − 4] ;

#end i f
} MPI_Status ;

Ogni routine MPI ritorna MPI_SUCCESS se va a buon �ne altrimenti
ritorna un codice di errore (de�nizione nel �le mpi_errno.h).

1.3.1 Le comunicazioni point-to-point

Le comunicazioni point-to-point servono a far comunicare tramite un mes-
saggio due processi. Le routine di comunicazione possono essere bloccanti e
non bloccanti.
Le routine bloccanti hanno le seguenti caratteristiche:

• una send bloccante �return� dopo che ha modi�cato il bu�er dell'appli-
cazione per il riuso;

6

• una send bloccante può essere sincronizzata. In questo caso il processo
ricevente deve ricevere il messaggio prima che la send �return�;

• una send bloccante può essere asincrona se un bu�er di sistema è usato
per contenere i dati per eventuali consegne alle recv;

• una recv bloccante �return� quando riceve il messaggio dal processo
remoto.

Le routine non bloccanti hanno le seguenti caratteristiche:

• send e recv non bloccanti �return� immediatamente dopo l'esecuzione;

• la sincronizzazione delle operazioni non bloccanti è più di�coltosa so-
prattutto nella gestione dei bu�er che rischiano di essere sovrascritti;

• esistono routine MPI che servono a capire se le operazioni non bloccanti
sono state completate. Ad esempio se mandiamo in esecuzione una send
non bloccante il suo bu�er di comunicazione non può essere modi�cato
�nchè non ha completato l'operazione.

Mpi garantisce che se un processo manda due messaggi verranno ricevuti
nell'ordine in cui sono stati mandati. Se invece due processi diversi mandano
un messaggio ad un altro processo l'ordine di arrivo di questi messaggi non
è garantito .
Ecco un elenco di alcune routine bloccanti:

• MPI_Send(void *buf,int count, MPI_Datatype datatype, int dest, int
tag, MPI_Comm com) manda il messaggio in buf di lunghezza count e
tipo di dato datatype al processo con rank dest in com con identi�cativo
tag;

• MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm com, MPI_Status) riceve un messaggio di lunghez-
za count e tipo datatype in buf dal processo con rank source del comu-
nicatore com identi�cato da tag. In status viene memorizzato lo stato
del messaggio;

• MPI_Probe(int source, int tag, MPI_Comm com, MPI_Status *sta-
tus) si blocca �nchè non riceve un messaggio con rank source nel co-
municatore com identi�cato da tag. Memorizza lo stato in status;

• MPI_Get_count(MPI_Status *status, MPI_Datatype datatype, int *count)
memorizza in count il numero di elementi di tipo datatype in un mes-
saggio identi�cato tramite status.

7

Dopo aver visto alcune routine bloccanti ecco un elenco di alcune non bloc-
canti:

• MPI_Isend(void *buf,int count,MPI_Datatype datatype,int dest,int tag,
MPI_Comm com, MPI_request *request) simile a MPI_Send() solo
che è non bloccante. Il parametro request servirà alle funzioni che
testano il completamento dell'operazione;

• MPI_Irecv(void *buf,int count,MPI_Datatype datatype,int source,int
tag,MPI_Comm com, MPI_Request *req) simile a MPI_Recv() solo
che è non bloccante;

• MPI_Test(MPI_Request *request,int *�ag,MPI_Status *status) testa
se una non blocking request è completa e memorizza il risultato in �ag
e lo stato in status;

• MPI_Wait(MPI_Request *request,MPI_Status *status) si blocca �nchè
una non blocking request è completa.

1.3.2 Le comunicazioni collettive

Le comunicazioni collettive servono a far comunicare e sincronizzare più pro-
cessi tra loro.
Alcune routine per le comunicazioni collettive sono le seguenti:

• MPI_Barrier (MPI_Comm com): blocca i processi riferiti al comuni-
catore com �nchè non viene chiamata da tutti i processi

• MPI_Bcast (void *bu�er, int count, MPI_Datatype datatype, int root,
MPI_Comm com) manda un messaggio dal processo con rank root a
tutti gli altri processi;

• MPI_Reduce (void *sendbuf, void *recvbuf, int count, MPI_Datatype
datatype, MPI_Op op, int root, MPI_Comm comm) riduce tutti i val-
ori in unico valore tramite un'operazione op. Il tipo MPI_Op assume
un valore operazione come ad esempio MPI_SUM che porta la routine
a sommare tutti i valori nei sendbuf dei processi che la chiamano e a
memorizzare il risultato in recvbuf del processo principale;

• MPI_Allreduce (void *sendbuf, void *recvbuf, int count, MPI_Datatype
datatype, MPI_Op op, MPI_Comm comm) fa un'operazione di riduzione
e memorizza il risultato nel recvbuf di ogni processo che la chiama;

8

• MPI_Scatter (void *sendbuf, int sendcnt, MPI_Datatype sendtype,
void *recvbuf, int recvcnt, MPI_Datatype recvtype, int root, MPI_Comm
comm) manda un dato dal processo root a tutti gli altri del gruppo;

• MPI_Gather (void *sendbuf, int sendcnt, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm
comm) serve ad un processo root a ricevere tutti i dati dagli altri
processi del gruppo;

1.4 Introduzione alla simulazione

Per simulazione si intende l'imitazione delle operazioni eseguite nel tempo da
un processo reale, al �ne di studiarne le caratteristiche ed il comportamento.
La simulazione ha il seguente scopo:

1. generazione di una storia arti�ciale del sistema;

2. studio e valutazione delle caratteristiche del sistema (analisi delle prestazioni);

3. risposta alla domanda �cosa accade se...�;

4. analisi di sistemi �ipotetici�;

5. confronto tra due o più sistemi;

6. determinazione di punti critici (bottlenecks);

7. predizione delle prestazioni del sistema;

8. capacity planning (capacità di piani�cazione).

La risoluzione del problema tramite una simulazione non è sempre la soluzione
migliore. Ci sono dei casi in cui i problemi sono risolvibili con metodi più
semplici, p.es con soluzioni analitiche di modelli matematici, oppure con una
semplice sperimentazione diretta del sistema esistente. In altri casi la simu-
lazione può avere un costo proibitivo oppure non è in grado di convalidare il
modello di simulazione.
I simulatori sono utilizzati anche nel campo delle reti multiprotocollo che
costituiscono uno strumento molto utile per l'esecuzione di e�cienti speri-
mentazioni, che possono avere come �ne:

1. il progetto di nuovi protocolli, applicazioni o sistemi;

2. una migliore convalida del comportamento di protocolli già esistenti;

9

3. l'oppurtunità di studiare l'interazione tra i protocolli su larga scala in
un ambiente controllato;

4. il confronto di sistemi già esistenti;

5. la determinazione del valore ottimale di un certo tipo di parametri;

6. la determinazione dei punti critici di un dato sistema;

7. la predizione delle prestazioni del sistema nel futuro;

8. la stima della capacità di un sistema.

1.5 Motivazioni della ricerca

Con la nascita dei moderni sistemi di calcolo multiprocessore e delle Grid un
software deve essere progettato in maniera apposita per sfruttarne le poten-
zialità. Le tecniche di parallelizzazione sono nate a questo scopo. Questa tesi
studia l'applicazione delle tecniche di parallelizzazione ai simulatori di rete
multiprotocollo.
Il simulatore studiato in questa tesi è ns che serve come riferimento per capire
le strategie utilizzate per la simulazione delle network.
La struttura di ns viene presa come riferimento per la progettazione di Pdnet,
il simulatore nato per consentire l'implementazione di scheduler paralleli sem-
plicemente. Lo scopo �nale della tesi è quello di progettare uno scheduler
parallelo per Pdnet e calcolarne le performance.

1.6 Organizzazione tesi

La tesi è organizzata nel seguente modo:

• il capitolo 2 introduce i concetti di modellazione di un sistema e parla
in particolare dei modelli DES utilizzati nei simulatori seriali;

• il capitolo 3 parla di applicazioni parallele ed in particolare delle tec-
niche PDES utilizzate nei simulatori paralleli;

• il capitolo 4 descrive il funzionamento di ns focalizzandosi sulle strut-
ture che utilizza per la simulazione delle network;

• il capitolo 5 descrive Pdnet focalizzandosi sulle di�erenze strutturali
rispetto ad ns e fornendo i dettagli tecnici per l'evoluzione di questo
simulatore;

10

• il capitolo 6 descrive lo scheduler parallelo implementato in Pdnet e
fornisce i risultati sul calcolo delle performance di questo scheduler.

11

Capitolo 2

Modelli di simulazione

2.1 Sistemi e modelli

Un sistema è un insieme di elementi o fenomeni interdipendenti. L'evoluzione
di un sistema può essere rappresentata da leggi descriventi le interconnessioni
tra le varie parti. Le grandezze di uscita sono le grandezze che caratterizzano
lo stato del sistema, mentre quelle di ingresso agiscono sul sistema dall'ester-
no in�uenzando le uscite (Figura 2.1). Solitamente la scelta delle grandezze
d'ingresso e uscita non è univoca ma dipende dal tipo di richieste per le quali
il sistema è studiato. Un modello è la descrizione matematica del sistema e

Figura 2.1: Rappresentazione di un Sistema

delle relazioni intercorrenti tra le sue parti. Il modello deve includere tutte
le caratteristiche del sistema reale che si vuole studiare. Se esiste una teoria
o una previsione matematica che descrive il comportamento del sistema può
essere utilizzata per la costruzione del modello. La modellazione matematica
di un sistema si traduce nella determinazione della funzione di trasferimen-
to f(I, α) che descrive il comportamento del sistema (in dipendenza delle
grandezze d'ingresso). Spesso la funzione f contiene un set di parametri
αk che non possono essere determinati a priori ma vengono scelti (tramite
confronto del modello con la realtà) per la riproduzione del comportamento

12

del sistema reale. La funzione f può essere determinata unicamente sulla
base delle informazioni sperimentali, senza cercare di spiegare la natura delle
relazioni tra le variabili (modelli �empirici�) oppure tentando di spiegare le
relazioni tra gli elementi del sistema (modelli �meccanicistici�):

• ogni modello meccanicistico è in qualche maniera empirico;

• un modello empirico può essere predittivo ma non aggiunge elementi
utili al sistema.

L'insieme delle possibili variabili d'ingresso scelte per la costruzione di un
modello non è in genere univoco:

• non è detto che tutte le variabili d'ingresso siano ugualmente impor-
tanti;

• e' bene non inserire un grande numero di variabili d'ingresso per non
complicare il modello;

• non si devono tralasciare eventuali grandezze d'ingresso che abbiano un
ruolo fondamentale nella descrizione del sistema.

Le variabili utilizzate nella costruzione di un modello possono schematica-
mente essere suddivise in:

1. variabili di stato: de�niscono lo stato del sistema;

2. tassi: determinano la variazione delle variabili di stato;

3. condizioni: rappresentano elementi esterni al sistema che hanno in-
�uenza sul sistema;

4. costanti: dati �ssi del problema / modello;

5. parametri: costanti il cui valore viene determinato tramite il confronto
con la realtà (taratura).

La modellazione di un sistema ha i seguenti vantaggi:

1. organizzazione delle conoscenze e osservazioni empiriche;

2. comprensione del sistema;

3. rilevanza di componenti e/o interazioni;

4. facilita l'analisi del sistema.

13

In fase di progettazione del modello dobbiamo tenere conto dei seguenti rischi:

1. livello di astrazione non appropriato;

2. tendenza ad estrapolare i risultati del modello oltre il suo campo di
applicabilità.

2.2 Descrizione dei modelli di simulazione

I modelli di simulazione servono a riprodurre virtualmente un sistema reale
per studiarne il comportamento e analizzarne i risultati. Ognuno di questi
modelli è caratterizzato dalle seguenti componenti:

• variabili di stato;

• eventi;

• entità;

• attributi;

• risorse;

• liste e code;

• attività;

• ritardi;

• stato;

• clock.

Le variabili di stato descrivono lo stato del sistema al tempo (simulato) t e
permettono di interrompere e riprendere la simulazione. Sono de�nite come
strutture dati del modello.
Gli eventi sono fenomeni che modi�cano lo stato del sistema. Un evento
interno (endogeno) riguarda le variabili interne al modello, mentre un even-
to esterno (esogeno) riguarda le variabili esterne al modello.
Le entità sono oggetti esplicitamente de�niti nel modello. Possono essere
dinamici o statici , competere per ottenere le risorse ed essere accodati
nelle rispettive code di attesa. Le entità hanno dei valori locali chiamati
attributi.
Le liste e le code sono strutture dati che caratterizzano un insieme di entità

14

che non possono accedere alle trasformazioni successive in quanto la macchi-
na risulta occupata.
Le attività sono una collezione di operazioni che trasformano lo stato di una
componente. Nella simulazione a eventi discreti le attività fanno avanzare il
tempo simulato t.
I ritardi sono la durata inde�nita di un'attività, legata alle condizioni e
all'evoluzione del sistema (attesa).
Lo stato descrive ad ogni istante di tempo la condizione del sistema.
Il clock regola lo scorrere del tempo di simulazione.

2.3 Progettazione di un modello di simulazione

Un modello di simulazione deve essere progettato per riprodurre alla per-
fezione il comportamento di un sistema reale. Per progettare un modello di
simulazione si deve seguire il seguente schema:

1. de�nizione degli obiettivi e delle problematiche da esaminare:
un' attenta analisi del problema consente di circoscriverne l'esame riducen-
do il successivo tempo di analisi;

2. stesura di un modello concettuale: consiste nella comprensione e
modellazione del sistema che si intende simulare; questa fase è parti-
colarmente importante in quanto de�nirà il comportamento dei diversi
�ussi di materiale e di informazioni che attraverseranno il modello;

3. validazione del modello concettuale: si tratta di un confronto con
il sistema reale e della capacità del modello di o�rire un immagine
consistente della realtà;

4. analisi dei dati in ingresso: la raccolta e l'analisi dei dati che di-
verranno la base per la de�nizione dei parametri di funzionamento del
sistema. Attraverso le tecniche del calcolo delle probabilità diviene pos-
sibile de�nire una distribuzione di probabilità per ogni parametro, da
inserire all'interno del modello;

5. scrittura del modello in termini matematici;

6. calibrazione e valutazione: si tratta di controllare che i parametri
determinati non assumano valori al di fuori dell'intervallo dei valori
possibili;

7. de�nizione di un piano degli esperimenti: una singola iterazione
(�run�) di simulazione non ha alcun signi�cato; rappresenta solo una

15

delle possibili evoluzioni del sistema. È quindi opportuno e�etture
diversi �run� per poi analizzare i parametri in uscita. La lunghezza
della singola iterazione e il numero delle iterazioni vengono determinate
in questa fase;

8. analisi dei dati in uscita: dopo aver raccolto i dati relativi ai parametri
è possibile creare degli intervalli di con�denza ovvero stimare il �range�
di valori in cui i parametri che analizzano il problema proposto al primo
passaggio possono oscillare.

2.4 Discrete Event Simulation

Discrete event simulation (DES) è una potente tecnica per capire il compor-
tamento del sistema. Le variabili di stato cambiano solo in corrispondenza
di eventi discreti, determinati a loro volta da attività e ritardi.
Il tempo simulato è de�nito tramite una variabile (clock), da non con-
fondere con il tempo reale del sistema da simulare e con il tempo di
esecuzione che ci indica il tempo di elaborazione del programma di simu-
lazione.
Il tempo simulato può essere avanzato in due modi:

1. per intervalli �ssi (unit-time);

2. per eventi (event-driven);

Quando si utilizzano intervalli �ssi si incrementa il clock di una quantità �ssa
∆, si esamina il sistema per determinare gli eventi che devono aver luogo e si
e�etuano le necessarie trasformazioni. Si trattano tutti gli eventi con tempo
di occorrenza tiε(t, t+ ∆). La scelta dell'intervallo ∆ è importante perchè
con questo tipo di gestione del tempo di simulazione si devono fare le seguenti
considerazioni:

• eventi con tempi di occorrenza diversi possono essere trattati come
simultanei;

• ci possono essere degli intervalli vuoti.

Nei meccanismi di avanzamento event-driven non si veri�cano i problemi
descritti sopra. In questo caso si avanza il clock �no al tempo di occorrenza
del prossimo evento. L'avanzamento del tempo in questo modo comporta le
seguenti considerazioni:

• gli incrementi sono irregolari;

16

• gli eventi sono simultanei solo se hanno lo stesso tempo di occorrenza;

• si evitano tempi di inattività.

Per strutturare questi modelli di simulazione esistono quattro metodologie:

1. Interazione tra processi: il �usso di esecuzione di un processo em-
ula il �usso di un oggetto (entità) attraverso il sistema. L'esecuzione
procede �nchè il �usso non viene bloccato, ritardato, terminato o inizia
una nuova attività. Quando il �usso di un'entità viene bloccato il tem-
po di simulazione avanza al tempo di inizio previsto dalla successiva
entità in esecuzione.

2. Scansione di attività: esiste un insieme di moduli in attesa di ese-
cuzione (uno per attività). Avanza il tempo a intervalli �ssi e periodica-
mente esegue un test sulle condizioni che determinano l'esecuzione degli
eventi. Se le condizioni sono veri�cate esegue l'evento aggiornando le
variabili di stato.

3. �Tre fasi�: avanza il tempo simulato a intervalli �ssi, rilascia le risorse
mantenute dalle attività che risultano terminate dopo l'avanzamento
ed esegue attività per le quali siano disponibili le risorse.

4. Scheduling di eventi: il tempo simulato avanza con un meccanismo
event-driven. Lo scheduler di eventi mantiene una lista ordinata
per tempo simulato di eventi futuri. La routine di evento aggiorna le
variabili di stato e la lista di eventi (inserice, cancella o rinvia eventi).
La routine di inizializzazione de�nisce lo stato iniziale del sistema.

2.5 Modello di esempio DES con scheduling di

eventi

Questo paragrafo illustra la costruzione di un modello di simulazione DES
con scheduling di eventi del sistema rappresentato in �gura 2.2.
Il sistema in esame è una rete con quattro nodi (n1,n2,n3,n4) in cui il nodo n1
è connesso a n3 tramite un link l1, n2 a n3 tramite un link l2, n3 a n4 tramite
un link l3 . Dai nodi n1 e n2 vengono spediti dei pacchetti in continuazione
verso n4. Dai link può passare un solo pacchetto per volta. Nel nodo n3 esiste
una coda di attesa (q) per i pacchetti che arrivano in n3 per essere spediti
in n4 mentre l3 risulta occupato. I pacchetti in coda vengono mandati verso
n4 nell'ordine in cui sono arrivati.
Lo scopo del modello è quello di calcolare il numero di pacchetti che arrivano

17

Figura 2.2: Sistema simulato

in n4 rispettivamente partiti da n1 e n2 e il numero medio di pacchetti in
coda per un tempo di simulazione T.
Un set di stati è speci�cato per il sistema, e la sua evoluzione è vista come
una sequenza nella forma < s0, (e0, t0), s1, (e1, t1), s2.... > dove gli si sono gli
stati, gli ei gli eventi e ti i tempi di occorrenza degli eventi (reali positivi con
ti <= ti+1).
Lo stato s0 è quello iniziale, l'evento e0 occorre al tempo t0 e porta il sistema
allo stato s1, l'evento e1 occorre al tempo t1 e porta il sistema allo stato s2

etc.....
Fatta l'evoluzione del sistema si determinano i risultati pre�ssati.
In generale un evento dipende da un insieme di variabili di input (subset delle
variabili di stato) e la sua esecuzione genera un nuovo stato modi�cando un
subset delle variabili di stato del sistema. L'insieme delle variabili di stato
del sistema descritto sono:

1. i tempi che impiega un pacchetto ad attraversare i link.

• t1: tempo che ad un pacchetto serve per attraversare il link l1;

• t2: tempo che ad un pacchetto serve per attraversare il link l2;

• t3: tempo che ad un pacchetto serve per attraversare il link l3.

2. la coda dei pacchetti (<n1,n2..>);

3. la variabile booleana qblocked che indica se l3 è bloccato (true) oppure
no (false);

18

4. il tempo clock di simulazione;

5. npack1: indica il numero di pacchetti partiti da n1 che arrivano in n4;

6. npack2: indica il numero di pacchetti partiti da n2 che arrivano in n4;

Dopo l'esecuzione del modello si determinano i risultati raggiunti dalla sim-
ulazione in base allo stato �nale del sistema. L'obiettivo del modello è quello
di de�nire i seguenti risultati:

• npack1;

• npack2;

• N: il numero medio di pacchetti in coda. Utilizzando una funzione
N(t), rappresentata tramite una lista < (ti, ni), (ti+1, ni+1)...... > dove
ni è il numero di pacchetti in coda al tempo ti, si calcola N:

N =
1

T
∗

∫ T

0
N(t)dt

.

Lo stato del sistema è rappresentato dalla tupla {q, qblocked, npack1, npack2,
N(t)}, dal tempo di simulazione clock, dai tempi di percorrenza dei link e
dalla event list. I pacchetti sono identi�cati da un'etichetta che indica il nodo
da cui sono partiti. Ogni pacchetto che parte da n1 ha un'etichetta n1, men-
tre se parte da n2 ha un'etichetta n2. La coda q se è vuota è rappresentata
con <>, se ci sono elementi è de�nita come <n1, n2, n1...> con gli elementi
messi in ordine di arrivo. Si utilizza un meccanismo FIFO (First In First
Out) cioè il primo che arriva sarà il primo ad uscire dalla coda. Indicando
con Ncoda (inizialmente 0) il numero di elementi in coda si hanno le seguenti
procedure di inserimento e cancellazione in coda:

enque(etichetta)
q=q+<etichetta>//inserisce pacchetto alla �ne della coda
Ncoda = Ncoda + 1//incrementa il numero di elementi in coda
N(clock) = Ncoda//assegna il valore alla funzione al tempo clock

end procedure

19

deque()
if q = <> then

qblocked=false;
else

n=�rst(q) // ottiene e rimuove primo pacchetto in coda
Ncoda = Ncoda − 1//decrementa il numero di elementi in coda
N(clock) = Ncoda

link3(n) //manda un pacchetto al link3 (descritta dopo)
end procedure

Lo scheduler di eventi utilizza una event list, caratterizzata da una
seguenza di tuple (e,t) ordinate in base al tempo. Le procedure utilizzate
dallo scheduler per interagire con l'event list ed eseguire gli eventi sono le
seguenti:

• schedule(e,t): inserisce l'evento e nella event list nella giusta posizione
in base al tempo;

• getEvent(e,t): rimuove il primo elemento dalla event list (quello con
tempo minore) copiandolo in e. Il suo tempo di esecuzione lo copia in
t;

• exec(e): esegue l'evento e.

I link devono simulare il tempo (delay) che un pacchetto perde per passare
in esso. Questo si simula schedulando l'arrivo del pacchetto dopo un tempo
t. Quando il pacchetto è passato ne può passare subito un'altro. Questo si
simula schedulando la partenza del prossimo pacchetto dopo un tempo t.
Le seguenti procedure rappresentano i tre link e la procedura arrival3 che
deve essere chiamata quando il pacchetto arriva in n3. Quest'ultima proce-
dura serve a mettere il pacchetto in coda se l3 è occupato oppure se è libero
fa passare il pacchetto direttamente:

link1()
schedule(arrival3(n1),clock+t1)//schedula l'arrivo del pacchetto
//schedula il passaggio del prossimo pacchetto
schedule(link1(),clock+t1)

end procedure

20

link2()
schedule(arrival3(n2),clock+t2)
schedule(link2(),clock+t2)

end procedure

link3(etichetta)
//schedula la consegna al tempo di arrivo
schedule(consegna(etichetta),clock+t3)
schedule(deque(),clock+t3)

end procedure

arrival3(etichetta)
if qblocked = false then

qblocked=true //blocca il link
link3(etichetta) // passa il pacchetto nel link3

else
enque(etichetta) // mette il pacchetto in coda

endif
end procedure

Nelle procedure link1, link2, link3 si hanno le tre variabili di input t1,
t2, t3 che sono i tempi di passaggio del pacchetto. Se i pacchetti sono tutti
uguali si assegnano dei valori �ssi all'inizio della simulazione (modello deter-
ministico). Se invece i pacchetti hanno diverse dimensioni si assegnano, ad
ogni passaggio, dei valori random entro un range x, y (modello stocastico)
tramite una funzione random(x,y). Se si suppone che per il link1 x = 6 e
y = 12, per il link2 x = 8 e y = 14 e per il link3 x = 6 e y = 10, si modi�cano
le procedure nel seguente modo:

link1()
t1=random(6,12)
//schedula l'arrivo del pacchetto
schedule(arrival3(n1),clock+t1)
//schedula il passaggio del prossimo pacchetto
schedule(link1(),clock+t1)

end procedure

21

link2()
t2=random(8,14)
schedule(arrival3(n2),clock+t2)
schedule(link2(),clock+t2)

end procedure

link3(etichetta)
t3=random(6,10)
//schedula la consegna al tempo di arrivo
schedule(consegna(etichetta),clock+t3)
schedule(deque(),clock+t3)

end procedure

Nella procedura link3 si schedula l'evento consegna(etichetta) che identi-
�ca la procedura di consegna del pacchetto a n4. Questa procedura non fa
altro che incrementare npack1 se l'etichetta del pacchetto è n1 altrimenti
incrementa npack2.

consegna(etichetta)
if etichetta=n1 then

npack1=npack1+1
else

npack2=npack2+1
endif

end procedure

La funzione main (descritta sotto) inizializza il sistema schedulando al
tempo 0 due eventi: link1 e link2 che iniziano a mandare pacchetti a n4.
Poi c'è il ciclo di routine che dura �nchè la simulazione termina. Il ciclo di
routine prende il prossimo evento dall' event list, lo esegue e aggiorna il clock
al tempo dell'evento eseguito.

22

main()
schedule(link1,0.0)
schedule(link2,0.0)
clock = nextEventclock()
while clock <= T do

getEvent(e,t)//prende il prossimo evento
exec(e) //lo esegue
clock = nextEventclock() //setta il timer al prossimo evento

end while
end procedure

La tecnica di simulazione appena descritta è simile alla tecnica di simu-
lazione usata in ns (Network Simulator) , un simulatore di reti multiproto-
collo. Naturalmente quello descritto sopra è un modello molto sempli�cato
per capire il funzionamento del DES.

Esecuzione del modello deterministico

Siano t1 = 8.0, t2 = 10.0, t3 = 6.0 e T = 26.0 i valori assegnati alle vari-
abili. Lo stato iniziale è dato dalla tupla {<>,false,0,0,<>} e dall'event list
<(link1(),0.0),(link2(),0.0)>.
Si esegue il ciclo:

1. • clock = 0.0 exec(link1())

• stato raggiunto {<>,false,0,0,<>}

• event list <(link2(),0.0), (arrival3(n1),8.0), (link1(),8.0)>

2. • clock = 0.0 exec(link2())

• stato raggiunto {<>,false,0,0,<>}

• event list <(arrival3(n1),8.0),(link1(),8.0), (arrival3(n2),10.0), (link2(),10.0)>

3. • clock = 8.0 exec(arrival3(n1))

• stato raggiunto {<>,true,0,0,<>}

• event list <(link1(),8.0), (arrival3(n2),10.0), (link2(),10.0), (con-
segna(n1),14.0), (deque(),14.0)>

4. • clock = 8.0 exec(link1())

• stato raggiunto {<>,true,0,0,<>}

• event list <(arrival3(n2),10.0), (link2(),10.0), (consegna(n1),14.0),
(deque(),14.0), (arrival3(n1),16.0), (link1(),16.0)>

23

5. • clock = 10.0 exec(arrival3(n2))

• stato raggiunto {<n2>,true,0,0,<(10.0,1)>}

• event list <(link2(),10.0), (consegna(n1),14.0), (deque(),14.0), (ar-
rival3(n1),16.0), (link1(),16.0)>

6. • clock = 10.0 exec(link2())

• stato raggiunto {<n2>,true,0,0,<(10.0,1)>}

• event list <(consegna(n1),14.0), (deque(),14.0), (arrival3(n1),16.0),
(link1(),16.0), (arrival3(n2),20.0), (link2(),20.0)>

7. • clock = 14.0 exec(consegna(n1))

• stato raggiunto {<n2>,true,1,0,<(10.0,1)>}

• event list <(deque(),14.0), (arrival3(n1),16.0), (link1(),16.0), (ar-
rival3(n2),20.0), (link2(),20.0)>

8. • clock = 14.0 exec(deque())

• stato raggiunto {<>,true,1,0,<(10.0,1),(14.0,0)>}

• event list <(arrival3(n1),16.0), (link1(),16.0), (arrival3(n2),20.0),
(link2(),20.0) ,(consegna(n2),20.0), (deque(),20.0)>

9. • clock = 16.0 exec(arrival3(n1))

• stato raggiunto {<n1>,true,1,0,<(10.0,1),(14.0,0),(16.0,1)>}

• event list <(link1(),16.0), (arrival3(n2),20.0), (link2(),20.0) ,(con-
segna(n2),20.0), (deque(),20.0)>

10. • clock = 16.0 exec(link1())

• stato raggiunto {<n1>,true,1,0,<(10.0,1),(14.0,0),(16.0,1)>}

• event list <(arrival3(n2),20.0), (link2(),20.0) ,(consegna(n2),20.0),
(deque(),20.0), (arrival3(n1),24.0), (link1(),24.0)>

11. • clock = 20.0 exec(arrival3(n2))

• stato raggiunto {<n1,n2>,true,1,0, <(10.0,1), (14.0,0), (16.0,1),
(20.0,2)>}

• event list <(link2(),20.0) ,(consegna(n2),20.0), (deque(),20.0), (ar-
rival3(n1),24.0), (link1(),24.0)>

12. • clock = 20.0 exec(link2())

• stato raggiunto {<n1,n2>,true,1,0, <(10.0,1), (14.0,0), (16.0,1),
(20.0,2)>}

24

• event list <(consegna(n2),20.0), (deque(),20.0), (arrival3(n1),24.0),
(link1(),24.0), (arrival3(n2),30.0), (link2(), 30.0)>

13. • clock = 20.0 exec(consegna(n2))

• stato raggiunto {<n1,n2>,true,1,1, <(10.0,1), (14.0,0), (16.0,1),
(20.0,2)>}

• event list <(deque(),20.0), (arrival3(n1),24.0), (link1(),24.0), (ar-
rival3(n2),30.0), (link2(), 30.0)>

14. • clock = 20.0 exec(deque())

• stato raggiunto {<n2>,true,1,1, <(10.0,1), (14.0,0), (16.0,1), (20.0,1)>}

• event list <(arrival3(n1),24.0), (link1(),24.0), (consegna(n1),26.0),
(deque(),26.0), (arrival3(n2),30.0), (link2(), 30.0) >

15. • clock = 24.0 exec(arrival3(n1))

• stato raggiunto {<n2,n1>,true,1,1, <(10.0,1), (14.0,0), (16.0,1),
(20.0,1), (24.0,2)>}

• event list < (link1(),24.0), (consegna(n1),26.0), (deque(),26.0),
(arrival3(n2),30.0), (link2(), 30.0) >

16. • clock = 24.0 exec(link1())

• stato raggiunto {<n2,n1>,true,1,1, <(10.0,1), (14.0,0), (16.0,1),
(20.0,1), (24.0,2)>}

• event list < (consegna(n1),26.0), (deque(),26.0), (arrival3,30.0),
(link2(), 30.0), (arrival3(n1),32.0), (link1(),32.0) >

17. • clock = 26.0 exec(consegna(n1))

• stato raggiunto {<n2,n1>,true,2,1, <(10.0,1), (14.0,0), (16.0,1),
(20.0,1), (24.0,2)>}

• event list < (deque(),26.0), (arrival3(n2),30.0), (link2(), 30.0),
(arrival3(n1),32.0), (link1(),32.0) >

18. • clock = 26.0 exec(deque())

• stato raggiunto {<n1>,true,2,1, <(10.0,1), (14.0,0), (16.0,1), (20.0,1),
(24.0,2), (26.0,1)>}

• event list < (arrival3(n2),30.0), (link2(), 30.0), (arrival3(n1),32.0),
(link1(),32.0), (consegna(n2),32.0), (deque(),32.0)>

19. • clock = 30.0 esce dal ciclo perchè termina la simulazione

25

• stato �nale {<n1,n2>,true,2,1, <(10.0,1), (14.0,0), (16.0,1), (20.0,1),
(24.0,2), (26.0,1), (30.0,2)>}

I risultati della simulazione sono:

• npack1=2 (numero pacchetti partiti da n1 arrivati in n4);

• npack2=1 (numero pacchetti partiti da n2 arrivati in n4);

• la funzione N(t).
Da questa funzione si calcola il numero medio di elementi in coda N:

N =
1

26
∗

∫ 26

0
N(t)dt = 0.615

Esecuzione del modello stocastico

In questo tipo di simulazione si inserisce come input solo il tempo T = 26.0
perchè i valori t1, t2, t3 vengono calcolati nelle funzioni link1, link2, link3.
Lo stato iniziale è dato dalla tupla {<>, false, 0, 0, <>} e dall'event list
<(link1(), 0.0),(link2(), 0.0)>.
Si esegue il ciclo:

1. • clock = 0.0 exec(link1()) t1=10

• stato raggiunto {<>,false,0,0,<>}

• event list <(link2(),0.0), (arrival3(n1),10.0), (link1(),10.0)>

2. • clock = 0.0 exec(link2()) t2=9.0

• stato raggiunto {<>,false,0,0,<>}

• event list <(arrival3(n2),9.0), (link2(),9.0), (arrival3(n1),10.0), (link1(),10.0)>

3. • clock = 9.0 exec(arrival3(n2)) t3=6.0

• stato raggiunto {<>,true,0,0,<>}

• event list <(link2(),9.0), (arrival3(n1),10.0), (link1(),10.0), (con-
segna(n2),15.0), (deque(),15)>

4. • clock = 9.0 exec(link2()) t2=14.0

• stato raggiunto {<>,true,0,0,<>}

• event list <(arrival3(n1),10.0), (link1(),10.0), (consegna(n2),15.0),
(deque(),15), (arrival3(n2),23.0), (link2(),23.0) >

5. • clock = 10.0 exec(arrival3(n1))

26

• stato raggiunto {<n1>,true,0,0,<(10.0,1)>}

• event list <(link1(),10.0), (consegna(n2),15.0), (deque(),15), (ar-
rival3(n2),23.0), (link2(),23.0) >

6. • clock = 10.0 exec(link1()) t1=7.0

• stato raggiunto {<n1>,true,0,0,<(10.0,1)>}

• event list <(consegna(n2),15.0), (deque(),15),(arrival3(n1),17.0),
(link1(),17.0), (arrival3(n2),23.0), (link2(),23.0) >

7. • clock = 15.0 exec(consegna(n2))

• stato raggiunto {<n1>,true,0,1,<(10.0,1)>}

• event list <(deque(),15),(arrival3(n1),17.0), (link1(),17.0), (arrival3(n2),23.0),
(link2(),23.0) >

8. • clock = 15.0 exec(deque()) t3=10.0

• stato raggiunto {<>,true,0,1,<(10.0,1), (15.0,0)>}

• event list <(arrival3(n1),17.0), (link1(),17.0), (arrival3(n2),23.0),
(link2(),23.0), (consegna(n1),25.0), (deque(n1), 25.0) >

9. • clock = 17.0 exec(arrival3(n1))

• stato raggiunto {<n1>,true,0,1,<(10.0,1), (15.0,0), (17.0,1)>}

• event list <(link1(),17.0), (arrival3(n2),23.0), (link2(),23.0), (con-
segna(n1),25.0), (deque(n1), 25.0) >

10. • clock = 17.0 exec(link1()) t1=8.0

• stato raggiunto {<n1>,true,0,1,<(10.0,1), (15.0,0), (17.0,1)>}

• event list <(arrival3(n2),23.0), (link2(),23.0), (consegna(n1),25.0),
(deque(n1), 25.0), (arrival3(n1),25.0), (link1(),25.0)>

11. • clock = 23.0 exec(arrival3(n2))

• stato raggiunto {<n1,n2>,true,0,1,<(10.0,1), (15.0,0), (17.0,1),(23.0,2)>}

• event list <(link2(),23.0), (consegna(n1),25.0), (deque(n1), 25.0),
(arrival3(n1),25.0), (link1(),25.0)>

12. • clock = 23.0 exec(link2()) t2=8.0

• stato raggiunto {<n1,n2>,true,0,1,<(10.0,1), (15.0,0), (17.0,1),(23.0,2)>}

• event list <(consegna(n1),25.0), (deque(n1), 25.0), (arrival3(n1),25.0),
(link1(),25.0), (arrival3(n2),31.0), (link2(),31.0)>

27

13. • clock = 25.0 exec(consegna(n1))

• stato raggiunto {<n1,n2>,true,1,1,<(10.0,1), (15.0,0), (17.0,1),(23.0,2)>}

• event list <(deque(n1), 25.0), (arrival3(n1),25.0), (link1(),25.0),
(arrival3(n2),31.0), (link2(),31.0)>

14. • clock = 25.0 exec(deque()) t3=6

• stato raggiunto {<n2>,true,1,1,<(10.0,1), (15.0,0), (17.0,1), (23.0,2),
(25.0,1)>}

• event list <(arrival3(n1),25.0), (link1(),25.0), (arrival3(n2),31.0),
(link2(),31.0), (consegna(n1),31.0), (deque(),31.0)>

15. • clock = 25.0 exec(arrival3(n1))

• stato raggiunto {<n2,n1>,true,1,1,<(10.0,1), (15.0,0), (17.0,1),
(23.0,2), (25.0,2)>}

• event list <(link1(),25.0), (arrival3(n2),31.0), (link2(),31.0), (con-
segna(n1),31.0), (deque(),31.0)>

16. • clock = 25.0 exec(link1()) t1=12

• stato raggiunto {<n2,n1>,true,1,1,<(10.0,1), (15.0,0), (17.0,1),
(23.0,2), (25.0,2)>}

• event list <(arrival3(n2),31.0), (link2(),31.0), (consegna(n1),31.0),
(deque(),31.0), (arrival3(n1),37.0), (link1(),37.0)>

17. • clock = 31.0 termina la simulazione

• stato �nale {<n2,n1,n2>,true,1,1,<(10.0,1), (15.0,0), (17.0,1), (23.0,2),
(25.0,2), (31.0,3)>}

• event list <(link2(),31.0), (consegna(n1),31.0), (deque(),31.0), (ar-
rival3(n1),37.0), (link1(),37.0)>

I risultati della simulazione sono:

• npack1=1 (numero pacchetti partiti da n1 arrivati in n4);

• npack2=1 (numero pacchetti partiti da n2 arrivati in n4);

• la funzione N(t).
Da questa funzione ci calcoliamo il numero medio di elementi in coda N:

N =
1

26
∗

∫ 26

0
N(t)dt = 0.615

28

Tempo di esecuzione

Il tempo di esecuzione di un modello dipende da fattori �sici. Si Suppone
che per eseguire ogni ciclo di simulazione dei modelli sopra ci vuole un tem-
po medio tmedio. Il modello deterministico sarà eseguito mediamente in un
tempo 19 ∗ tmedio, mentre quello stocastico in un tempo 17 ∗ tmedio.

29

Capitolo 3

Programmazione parallela

3.1 De�nizione di programmazione parallela

Il calcolo parallelo si riferisce alla possibilità di velocizzare l'esecuzione di
un codice per mezzo di elaboratori che sfruttano l'utilizzo simultaneo di un
numero (anche) elevato di processori. Tutto ciò è ottenuto attraverso tecniche
di programmazione che permettono di suddividere un codice sequenziale in
sottoprogrammi o sottoprocessi che possono essere eseguiti simultaneamente
su più processori.
Questo tipo di programmazione può avere i seguenti vantaggi:

• in principio se il numero di processori è p, il tempo tp impiegato per ri-
solvere il problema potrà essere tp = t1/p (essendo t1 il tempo impiegato
da un singolo processore);

• e' possibile che parallelizzando il problema, il singolo processore dell'e-
laboratore parallelo richieda meno memoria;

• problemi computazionalmente onerosi possono essere a�rontati in tem-
pi ragionevoli senza che si debba aspettare una generazione di nuovi
processori più prestanti.

Ci sono anche i seguenti svantaggi:

• la programmazione parallela è molto complessa;

• l'e�cienza dipende dalla natura degli algoritmi, ma anche dalla natura
dell'elaboratore parallelo.

I passi per la parallelizzazione di un codice sono i seguenti:

• capire il problema che si vuole parallelizzare;

30

• capire il codice seriale (se esiste);

• capire se il problema può essere parallelizzato;

• identi�care le parti maggiormente pesanti e quelle su cui focalizzare
l'attenzione;

• identi�care i possibili �colli di bottiglia� e provare a eliminarli o ridurli;

• identi�cazione inibitori al parallelismo (dipendenza dai dati);

• studiare di�erenti algoritmi.

3.2 Legge di Amdahl

La legge di Amdahl(1967) ci aiuta a capire se un codice può essere paral-
lelizzato. Si immagini di avere un codice composto da una frazione f per-
fettamente parallelizzabile e da una frazione 1− f che invece non può essere
parallelizzata (Figura 3.1) e di avere p processori. Se con t1 si identi�ca il

Figura 3.1: Frazione di codice parallelizzabile

tempo necessario per elaborare in modo completamente seriale il codice in
questione si ha:

• f ∗ t1: tempo impiegato per elaborare in modo seriale la parte di codice
P completamente parallelizzabile;

31

• (1− f) ∗ t1: tempo impiegato per elaborare in modo seriale la parte di
codice S che non può essere parallelizzata;

• f ∗ t1/p: tempo impiegato per elaborare in modo parallelo su p proces-
sori la parte di codice P .

A questo punto si può ricavare tp (tempo necessario per elaborare l'intero
codice su di un calcolatore parallelo con p processori):

tp = (1− f) ∗ t1 + f ∗ t1/p = t1[f + (1− f) ∗ p]/p.

E' possibile ora ricavare lo speed-up:

sp = t1/tp = p/[f + (1− f) ∗ p] = 1/[f/p+ (1− f)].

Utilizzando un numero sempre più elevato di processori è possibile far ten-
dere a zero il rapportof/p. Si ottiene perciò che sp è minore o al massimo
uguale ad 1/(1 − f) (Figura 3.2). Questa è la legge di Amdahl, la quale

Figura 3.2: Legge di Amdahl

impone un limite superiore per il possibile speed-up in un codice in cui esiste
una parte irrimediabilmente seriale. Spesso la frazione non parallelizzabile
(1 − f) tende a zero quando le dimensioni computazionali del problema da
parallelizzare aumentano e possiamo raggiungere speed-up elevati.
E' ovvio che questo è un discorso molto astratto ed in realtà l'analisi della

32

situazione è più complessa. Ad esempio non si è mai preso in considerazione
il fatto che quando i processori cooperano in modo parallelo per elaborare
una certa quantità di calcoli, esiste un tempo speso nel comunicare i risultati
parziali necessari spesso ai vari processori per poter continuare l'elaborazione.
Le prestazioni di una elaborazione parallela vengono quindi a dipendere da
quante informazioni si devono scambiare i vari processori durante l'elabo-
razione parallela e dalla velocità con cui la rete di interconnessione scambia
i dati tra i vari processori.
Per quanto riguarda il degrado delle prestazioni che nascono dalla necessità
di comunicare dati durante l'elaborazione parallela, si deve notare che questo
spesso può comportare per alcuni processori dei punti morti in cui questi ri-
mangono inattivi perchè in attesa di dati da altri processori sottoposti ad
un carico di lavoro maggiore, sono problemi legati alla sincronizzazione tra i
processori.
Per quanto riguarda invece la velocità con cui vengono scambiati i dati tra i
processori, due sono le proprietà della rete di interconnessione che risultano
essere cruciali per le prestazioni dell'elaborazione parallela:

1. la larghezza di banda L della rete di interconnessione, cioè la quan-
tità di bit al secondo che possono essere trasferiti;

2. la latenza l della rete, cioè il tempo necessario all'attivazione della
comunicazione.

In presenza di latenza la larghezza di banda e�ettiva Leff diviene:

Leff = Dm/ttot = Dm/(l +Dm/L) = L/(1 + L ∗ l/Dm)

dove ttot è il tempo totale di comunicazione, mentre Dm è la dimensione del
messaggio; quindi Leff tende ad L solo se le dimensioni del messaggio Dm

tendono all'in�nito.

3.3 Regole per parallelizzare

Per avere una buona parallelizzazione bisogna tenere conto delle seguenti
regole:

• aumentare la frazione di codice parallelizzabile;

• riuscire a bilanciare in modo ottimale il lavoro tra i processori;

• minimizzare la comunicazione come quantità di dati e quantità di volte;

33

• ripensare radicalmente l'algoritmo per adeguarlo al calcolo parallelo.

Quando si parallelizza un codice i processi devono avere dei punti di sin-
cronizzazione (barriere):

• un task si ferma quando arriva ad una barriera;

• quando l'ultimo task arriva alla barriera, i task sono sincronizzati;

• l'elaborazione può ripartire.

Le barriere servono per scambiare dati e informazioni e per mantenere co-
erente tutta la simulazione. Si possono veri�care dei problemi con molti
processi. Se ogni processo che arriva alla barriera manda un messaggio a
tutti gli altri processi si può saturare la rete. Le implementazioni reali si
progettano cercando di limitare lo scambio di messaggi.
La distribuzione del carico è importante per le performance dei programmi
paralleli:

• distribuire il carico di lavoro in modo che tutti i processi siano occupati
per tutto il tempo;

• minimizzare i tempi morti (tempi di attesa) dei processi;

• partizionare ugualmente il lavoro di ogni processo.

L'assegnazione del carico può essere fatta in modo statico:

• in genere semplice e proporzionale al volumi;

• so�re di possibili sbilanciamenti;

o in modo dinamico:

• può curare problemi di sbilanciamenti;

• introduce un overhead dovuto alla gestione bilanciamento.

La granuralità è la misura qualitativa del rapporto tra calcoli e comunicazioni.
Il parallelismo può essere a grana �ne:

• pochi calcoli tra le comunicazioni (rapporto piccolo);

• facile da bilanciare;

• overhead di comunicazioni;

34

o a grana grossa:

• molti calcoli tra le comunicazioni (rapporto grande);

• può essere di�cile bilanciare il carico;

• probabili aumenti nelle performance.

Le operazioni I/O sono generalmente seriali e possono creare dei �colli di
bottiglia�. La gestione dell'I/O porta all'utilizzo di costrutti speci�ci del lin-
guaggio e del modello di programmazione usato.
Per associare il carico ad ogni processore bisogna decomporre il problema
originale in sottoproblemi oppure il dominio dei dati in sottodomini. Asseg-
nare ad ogni processo una parte del lavoro (sottoproblema o sottodominio).

3.4 Tecniche di parallelizzazione

Se si vuole parallelizzare un codice bisogna capire quale parte deve essere
eseguita in modo seriale da tutti i processi e quale parallelizzare, de�nire un
meccanismo per le operazioni di Input ed Output e stabilire un metodo per la
sincronizzazione e la comunicazione tra i processi coinvolti nella simulazione.
In questo paragrafo sono trattate alcune tecniche basilari per la risoluzione
di questi problemi.

3.4.1 Parallelizzazione cicli

In alcuni programmi, la maggior parte del tempo di CPU è consumato da
una piccola parte di codice. Supponiamo di avere il seguente codice seriale:

f o r i=1 to n {
vect a (n)
/∗Codice A∗/

.
/∗Codice B∗/
j=0
do

a (j) =
j=j+1

whi le j < n ;
/∗Codice C∗/
ope r a z i on i in vect a

}

35

In questo caso la parte B del codice consuma molto tempo CPU mentre le
parti A e C contengono tante linee di codice ma non consumano molto tempo
CPU. In questo caso conviene parallelizzare solo la parte B del codice. Si
deve fare attenzione all'array a() perchè è aggiornato in B ed è referenziato
in C. Il codice parallelizzato sarà il seguente:

f o r i=1 to n {
vect a (n)
/∗Codice A∗/

.
/∗Codice B∗/
j=i s t a
do

a (j) =
j=j+1

whi le j < iend ;
/∗ cod i c e B'∗/
syncdata (a)
/∗Codice C∗/
ope r a z i on i in vect a
/∗ f i n e Codice C∗/

}

Il carico dell'iterazione è distribuito in tutti i processi. L'array a() referenzi-
ato in C è aggiornato in B' tramite syncdata. Da notare i valori ista e iend
che indicano la porzione di array elaborata da ogni processo.
Un altro esempio è quello di programmi che usano il metodo delle di�erenze
�nite, dove ci sono alcuni do loops che contribuiscono quasi ugualmente al
tempo totale di comunicazione. Il codice sotto descrive un algoritmo con le
caratteristiche appena descritte:

do t=t1 , tn
do i =1,6

b(i)=b(i)+a (i)
end do
do i =1,6

a (i)=b(i−1)+b(i +1)
end do
do i =1,6

a (i) = a (i)+1.0
end do

end do

36

Se si sincronizzano i dati dei processi dopo ogni do loops, l'overhead di co-
municazione può negare il bene�cio della parallelizzazione. In questo caso
si cerca di minimizzare il numero dei messaggi cercando di scambiare solo
alcuni dati.

do t=t1 , tn
do i=i s t a , iend

b(i)=b(i)+a (i)
end do
// scambia s o l o i v a l o r i ad i a c en t i con
// g l i a l t r i p r o c e s s i
s h i f t (b)
do i=i s t a , iend

a (i)=b(i−1)+b(i +1)
end do
do i=i s t a , iend

a (i) = a (i)+1.0
end do

end do

Le iterazioni dei do loops sono distribuite in tutti i processi. In ogni do
loops un processo esegue solamente le operazioni sui vettori per valori di i
compresi tra ista e iend. Ogni processo non ha bisogno di conoscere tutti
i valori dei vettori a() e b(), eccetto per il secondo loop che ha bisogno dei
valori adiacenti ai dati che elabora di b() per calcolare a(). Si scambiano
questi dati tramite la funzione shift.

3.4.2 Grana grossa contro grana �ne

Un programma qualche volta può avere la possibilità di essere parallelizzato
in più livelli di scoping. Supponiamo di avere il seguente codice seriale:

proc main
.
do i =1,k

.
g enerate (a , k)
s o l v e (a)
.

end do
end proc

37

proc s o l v e (a)
.
do whi l e (NOT CONVERGED)

.
sub (a , x)
.

end do
endo proc

proc sub (a , x)
.
do i =1,n

y (i)=0.5∗(x (i−1)+x(i +1))+a (i)
end do
do i =1,n

x (i)=y (i)
end do
.

end proc

Se si parallelizza la sub ci deve essere una comunicazione per aggiornare il
valore di x in tutti i processi (parallelizzazione grana �ne).

proc sub (a , x)
.
do i=i s t a , iend

y (i)=0.5∗(x (i−1)+x(i +1))+a (i)
end do
do i=i s t a , iend

x (i)=y (i)
end do
/∗ s i scambia i v a l o r i d i x∗/
Comunicazione (x)
.

end proc

Un'altra soluzione è quella di parallelizzare la funzione principale (grana
grossa).

38

proc main
.
do i=i s t a , iend

.
g enerate (a , k)
s o l v e (a)
.

end do
/∗ s i scambiano i v a l o r i d i a∗/
comunicazione (a)

end proc

In generale se è possibile conviene parallelizzare con un meccanismo a grana
grossa.

3.4.3 Operazioni di input

Questo paragrafo descrive delle tecniche per parallelizzare la lettura di un �le
(operazione di input). Se esiste un modo per avere un �le condiviso allora
ogni processo può leggere direttamente dal �le.
Se il �le è di sola lettura si può creare una copia locale per ogni processo. Si
ha un miglioramento delle performance.
Un'altra tecnica è quella che un processo legge il �le e lo distribuisce tramite
messaggi BROADCAST agli altri processi. Un miglioramento delle per-
formance si può avere mandando ai vari processi solo i dati che devono
elaborare.

3.4.4 Operazioni di output

Le operazioni di output devono essere eseguite solo dal processo principale e
i dati per l'output devono essere mandati al processo principale tramite dei
messaggi.
Un altro modo è quello di avere un �le condiviso dove tutti i processi possono
accedere in scrittura. Il processo principale leggerà questi dati e li scriverà
nello STANDARD OUTPUT.

3.4.5 Metodi di comunicazione

Nelle simulazioni parallele i processi coinvolti si scambiano dei messaggi per
sincronizzarsi. Le comunicazioni possono essere collettive o point-to-point.
Nella scelta delle comunicazioni da utilizzare si deve tenere conto che limitare

39

il numero dei messaggi diminuisce i tempi di latenza.
Il metodo di comunicazione più semplice è quello che ogni processo manda
a tutti gli altri un messaggio dopo un determinato intervallo di esecuzione.
Questo tipo di comunicazione ha un tempo di latenza molto alto.
Per avere un numero ridotto di messaggi si può utilizzare una delle seguenti
tecniche:

• ogni processo manda i messaggi solo ai processi a cui interessano i dati
del mandante;

• si identi�ca un processo master che ha il compito di sincronizzare il
lavoro suo e degli altri processi (slave). Le comunicazioni sono solo tra
il master e gli slave;

• per eseguire un aggiornamento globale si può utilizzare il meccanismo
a �catena�. Ogni processo manda un messaggio al processo successivo.
L'ultimo processo manda un messaggio al primo (Figura 3.3).

Figura 3.3: Metodo di comunicazione a catena

3.5 PDES

Parallel discrete event simulation (PDES) è una tecnica di simulazione dis-
tribuita derivata dal discrete event simulation (DES). Il DES è implementa-
to per essere eseguito come unico processo. Il PDES attiva più processi (di
solito ne assegna uno per ogni processore) che vengono eseguiti in parallelo e
cooperano tra di loro tramite lo scambio di messaggi. Un fattore fondamen-
tale per avere un buon funzionamento del PDES è quello di distribuzione.
Tale distribuzione deve avere i seguenti obbiettivi:

• distribuire il carico di lavoro in maniera uniforme tra i processi coinvolti
nella simulazione parallela;

• limitare il numero di messaggi di scambio tra i processi in modo che il
tempo di latenza sia il minimo possibile.

40

Un altro problema del PDES è quello della sincronizzazione dei processi che
serve a garantire gli stessi risultati delle sincronizzazioni seriali. In un'appli-
cazione parallela ogni processo esegue una lista di eventi che possono essere
generati localmente oppure generati da processi remoti. Siccome rispetto al
tempo di simulazione i processi non sono sincronizzati tra loro, può accadere
che quando un processo esegue un evento event un evento remoto che deve es-
sere eseguito prima di esso non sia ancora arrivato. Se l'esecuzione in seguito
dell'evento remoto non modi�ca il subset delle variabili di input di event al-
lora l'integrità della simulazione non è stata violata altrimenti si. Per ovviare
a questo problema si possono utilizzare due modelli di sincronizzazione:

1. conservativo;

2. ottimistico.

3.5.1 Distribuzione del carico

La distribuzione del carico è fondamentale per il funzionamento ottimale del
PDES. Una distribuzione di carico ottimale comporta una migliore velocità
di esecuzione.
I simulatori hanno delle strutture dati che sono elaborate dagli eventi durante
la simulazione. La struttura può essere divisa in atomi che hanno i punti di
con�ne dove un evento eseguito in quella porzione di struttura genera una
schedulazione con ritardo maggiore di zero. Il carico di lavoro associato ad
ogni atomo è proporzionale al tempo che gli eventi perdono per elaborare il
suo stato durante la simulazione. Un altro dato da considerare è il carico di
scambio tra gli atomi che è proporzionale al numero di schedulazioni che si
veri�cano tra gli atomi durante la simulazione oppure ai ritardi di schedu-
lazione nei punti di con�ne degli atomi.
Lo scopo della distribuzione è quello di dividere la struttura principale in
sottostrutture, da posizionare nei processi attivi per la simulazione, ed avere
un carico equilibrato tra le sottostrutture. Il carico di ogni sottostruttura
è uguale alla somma dei carichi degli atomi che la compongono. Un altro
fattore fondamentale è quello di minimizzare il carico di scambio tra le sot-
tostrutture. In alcuni casi si deve trovare un compromesso tra l'equilibrio del
carico e la minimizzazione delle comunicazioni.
La distribuzione del carico può essere fatta manualmente oppure utilizzando
le tecniche di clustering.

41

Clustering

Il clustering o analisi dei cluster (dal termine inglese cluster analysis
introdotto da Robert Tryon nel 1939), o analisi di raggruppamento, è un
insieme di tecniche di analisi multivariata dei dati volte alla selezione e rag-
gruppamento di elementi omogenei in un insieme di dati. Tutte le tecniche
di clustering si basano sul concetto di distanza tra due elementi. Infatti la
bontà delle analisi ottenute dagli algoritmi di clustering dipende essenzial-
mente da quanto è signi�cativa la metrica, e quindi da come è stata de�nita
la distanza. La distanza è un concetto fondamentale, dato che gli algorit-
mi di clustering raggruppano gli elementi a seconda della distanza, e quindi
l'appartenenza o meno ad un insieme dipende da quanto l'elemento preso in
esame è distante dall'insieme.
Le tecniche di clustering si possono basare principalmente su due ��loso�e�:

• dal basso verso l'alto (Bottom-Up):
questa �loso�a prevede che inizialmente tutti gli elementi siano con-
siderati cluster a sè, e poi l'algoritmo provvede ad unire i cluster più
vicini. L'algoritmo continua ad unire elementi al cluster �no ad ot-
tenere un numero pre�ssato di cluster, oppure �no a che la distanza
minima tra i cluster non supera un certo valore.

• dall'alto verso il basso (Top-Down):
all'inizio tutti gli elementi sono un unico cluster, e poi l'algoritmo inizia
a dividere il cluster in tanti cluster di dimensioni inferiori. Il criterio
che guida la divisione è sempre quello di cercare di ottenere elementi
omogenei. L'algoritmo procede �no a che non ha raggiunto un numero
pre�ssato di cluster. Questo approccio è anche detto �gerarchico�.

Le tecniche di clustering vengono utilizzate generalmente quando si hanno
tanti dati eterogenei, e si è alla ricerca di elementi anomali.
Queste tecniche possono essere utilizzate per dividere il carico tra vari pro-
cessi per l'esecuzione di algoritmi paralleli.
Esistono varie classi�cazioni delle tecniche di clustering comunemente utiliz-
zate. Una prima categorizzazione dipende dalla possibilità che ogni elemento
possa o meno essere assegnato a più clusters:

• clustering esclusivo, in cui ogni elemento può essere assegnato ad esat-
tamente un solo gruppo. I clusters risultanti, quindi, non possono
avere elementi in comune. Questo approccio è detto anche Hard
Clustering;

42

• clustering non-esclusivo, in cui un elemento può appartenere a più clus-
ter con gradi di appartenenza diversi. Questo approccio è noto anche
con il nome di Soft Clustering.

Un'altra suddivisione delle tecniche di clustering tiene conto della tipologia
dell'algoritmo utilizzato per dividere lo spazio:

• Clustering Partitivo (detto anche k-clustering), in cui per de�nire l'ap-
partenenza ad un gruppo viene utilizzata una distanza ed un punto
rappresentativo del cluster (centroide, medioide ecc...).

• Clustering Gerarchico, in cui viene creata una visione gerarchica dei
cluster, visualizzando in un trellis i passi di accorpamento/divisione
dei gruppi. Le tecniche di clustering gerarchico non producono un
partizionamento �at dei punti, ma una rappresentazione gerarchica ad
albero(Figura 3.4).
Questi algoritmi sono a loro volta suddivisi in due classi:

� Agglomerativo: Questi algoritmi assumono che inizialmente ogni
cluster (foglia) contenga un singolo punto; ad ogni passo, poi,
vengono fusi i cluster più �vicini� �no ad ottenere un singolo grande
cluster. Questi algoritmi necessitano di misure per valutare la
similarità tra clusters, per scegliere la coppia di cluster da fondere
ad ogni passo;

� Divisivo: Questi algoritmi, invece, partono considerando lo spazio
organizzato in un singolo grande cluster contenente tutti i punti, e
via via lo dividono in due. Ad ogni passo viene selezionato un clus-
ter in base ad una misura, ed esso viene suddiviso in due cluster
più piccoli. Normalmente viene �ssato un numero minimo di punti
sotto il quale il cluster non viene ulteriormente suddiviso (nel caso
estremo questo valore è 1). Questi tipi di algoritmi necessitano di
de�nire una funzione per scegliere il cluster da suddividere;

• Clustering density-based, in cui il raggruppamento avviene analizzando
l'intorno di ogni punto dello spazio. In particolare, viene considerata
la densità di punti in un intorno di raggio �ssato.

Un esempio di algoritmo di clustering è il QT (Quality Threshold) Clustering
(Heyer et al., 1999). Questo metodo è stato inventato per il clustering dei
geni e restituisce sempre lo stesso risultato quando si ripete diverse volte.
L'algoritmo è il seguente:

• l'utente sceglie un diametro massimo per i clusters;

43

Figura 3.4: Clustering gerarchico

• costruzione di un cluster candidato per ogni punto, includendo il punto
più vicino, il prossimo più vicino, e cosi via, �no a che il diametro del
cluster non supera la soglia;

• salvataggio del cluster candidato con la maggior parte dei punti come
primo vero cluster, e rimozione di tutti i punti nel cluster da ulteriori
considerazioni;

• ricorsione col ridotto insieme di cluster.

Applicazione di QT al partizionamento dei gra�

Il QT può essere una soluzione al partizionamento dei gra� su più cluster.
Se si vogliono utilizzare le tecniche PDES in simulatori di rete come Ns e
Pdnet (descritti nei capitoli successivi) ci troviamo di fronte a strutture dati
di tipo grafo. L'atomo strutturale del grafo è il nodo. Gli archi sono i punti
di con�ne tra gli atomi. La divisione del grafo in sottogra� è l'obiettivo di
questa distribuzione.
Per prima cosa si deve calcolare il carico di lavoro medio associato ai singoli
nodi e il carico di scambio tra i nodi (distanza). Per la creazione di sottogra�
si parte dal primo cluster a cui si assegna un nodo. In base ad una strategia
di scelta si assegnano altri nodi al primo cluster , uno per volta, �n quando
non si supera una soglia che indica il carico massimo da assegnare ad un
sottografo. Questa operazione viene fatta ricorsivamente per tutti i cluster.

44

3.5.2 Modello di sincronizzazione conservativo

La sincronizzazione conservativa è conservativa nel senso che ogni LP (Local
Process) esegue un evento solo se è sicuro che non vi siano eventi esterni
(eventi eseguiti dagli altri LP) che in�uenzano il suo stato di input.
Tra gli LP si hanno i canali di comunicazione, che non variano durante la
simulazione, in cui i messaggi sono ricevuti nell'ordine in cui sono stati man-
dati. In ogni simulazione conservativa ogni LP esegue ciclicamente questi
due passi:

• LP riceve un messaggio da un canale di input;

• esegue gli eventi �no a che è sicuro che un messaggio relativo ad un
evento esterno non modi�chi l'input dell'evento.

Un problema che a�igge questo modello di simulazione è il deadlock. Sup-
poniamo ci siano tre LP A, B, C che comunicano tra di loro in questo modo:
A->B->C->A. Nel corso della simulazione può capitare che in un intervallo
di sincronizzazione gli LP non hanno messaggi remoti da mandare. Nel nos-
tro caso ci troviamo in una situazione in cui B attende un messaggio da A,
C attende un messaggio da B e A attende un messaggio da C. Tutti gli LP
rimangono bloccati in attesa di un messaggio (stallo). Per risolvere questo
problema gli LP mandano dei NULL MESSAGE che servono ad avanzare
il tempo di �libertà di esecuzione� degli altri LP.
Per capire il funzionamento di questi metodi viene illustrato il modello di
Chandy-Misra che utilizza un meccanismo di sincronizzazione conNULLMES-
SAGE mandati al limite del bloccaggio. Le seguenti de�nizioni de�niscono
le componenti di questo modello:

• Un LP (Logical Process) o federato è de�nito come un set che con-
tiene componenti base mappato in modo che è conforme all'architettura
parallela e distribuita.

• LVT (Local Virtual Time): tempo associato con l'LP. Ogni LP non
conosce gli LVT degli altri LP a meno che non comunichino tra di loro
con dei messaggi;

• FEL (Future Event List): la lista degli eventi interni di un LP;

• Message: un meccanismo per mandare e ricevere messaggi e associarli
ai relativi eventi remoti;

• Eventi : gli eventi possono generare cambiamenti di stato del modello,
generare altri eventi locali o mandare messaggi agli altri federati per la
schedulazione di un evento remoto;

45

• Lookahead: il tempo più piccolo che deve passare da una schedu-
lazione remota all'esecuzione di questo evento nell'LP remoto. Se ad
esempio il primo evento eseguibile in un LP si ha al tempo T, questo
evento non può schedulare un evento in un LP remoto con un tempo
di esecuzione < T+lookahead;

• EIT(r)(Earliest Input Time): vettore che indica i tempi entro cui un
LP deve ricevere un messaggio dagli LP remoti; il minimo valore di
questo vettore ci indica il tempo entro cui un LP deve ricevere un
messaggio (eit);

• EOT(r) (Earliest Output Time) : vettore che indica i tempi entro cui
un LP deve mandare un messaggio in remoto;

• ECOT(r) (Earliest Conditional Output Time): vettore che indica i
tempi entro cui un LP deve mandare un messaggio in remoto assumendo
che non riceva nessun messaggio nell'intervallo.

Prima di iniziare l'esecuzione della simulazione il sistema e�ettua il cluster-
ing e crea i canali di comunicazione tra gli LP (max uno per ogni coppia di
LP sorgente destinazione).
Dopo l'inizializzazione generale del sistema in ogni LP è de�nito un sotto-
sistema che ha bisogno di comunicare con gli altri sottosistemi assegnati agli
altri LP. Per le comunicazioni ogni LP si crea le seguenti strutture:

• il vettore look che rappresenta i valori di lookahead verso gli altri LP.
Se L'LP locale è i il valore look(j) rappresenta il lookahead i− > j.
Il calcolo dei lookahead dipende dal minimo ritardo delle schedulazioni
tra gli LP;

• il vettore eot formato da elementi di questo tipo: eot(j) = TIME_START+
look(j) (rappresenta il tempo entro cui l'LP locale deve mandare nec-
essariamente un messaggio all'LP j);

• il vettore Eit che rappresenta il vettore dei tempi di ricezione entro cui
L'LP locale deve ricevere un messaggio dagli altri LP;

• la variabile eit, calcolata come il minimo degli elementi del vettore Eit,
che rappresenta il punto di bloccaggio dell'LP;

L'esecuzione del modello esegue i seguenti passi:

1. ogni LP esegue gli eventi �nchè hanno un tempo minore (minore o
uguale) di eit. Ogni evento può generare dei messaggi remoti da man-
dare agli altri LP che possono essere gestiti in due modi:

46

• li manda al momento in cui vengono generati;

• li memorizza nella coda del canale a cui appartengono e li manda
tutti insieme al tempo eot assegnato al canale;

Nel primo caso si genera un numero di messaggi maggiore e l'aggior-
namento del tempo di bloccaggio è più frequente mentre nel secondo
caso si avranno messaggi più lunghi. Il secondo di solito è più veloce.
Per avere il pieno controllo dei messaggi da mandare ogni LP schedula
un evento particolare (evento �NULL Message�) per ogni LP remoto al
tempo eot corrispondente. Un evento del genere quando viene eseguito
si comporta nel seguente modo:

• calcola il nuovo eot(j) in questo modo:

eot(j) = min(first_event_time, eit) + look(j)

dove �rst_event_time rappresenta il tempo del primo evento �non
NULL Message� e look(j) il lookahead riferito all'LP a cui man-
diamo il messaggio;

• manda il valore di eot più eventuali messaggi all'LP assegnato con
l'evento;

• si rischedula al tempo eot(j).

2. se eit > first_event_time l'LP non può eseguire un evento locale e si
mette in ricezione di un messaggio. Quando lo riceve setta il campo del
vettore Eit corrispondente al processo mandante, si ricalcola il valore
di eit e ritorna al passo precedente.

Una variante di questo algoritmo non utilizza i valori di eot per mandare
i NULL MESSAGE bensì i valori di Ecot (Ecot = first_event_time +
look(j)). Questo algoritmo suppone che non ci siano messaggi ricevuti nel-
l'intervallo. Questo tipo di simulazione è però un modello ottimistico e de-
vono essere utilizzate delle tecniche particolari per ripristinare il sistema in
caso di errore.
In Figura 3.5 è rappresentato il calcolo di Eot, Ecot in un modello di simu-
lazione supponendo che il lookahead è uguale a 1.

3.5.3 Modello di sincronizzazione ottimistico

Nel modello di sincronizzazione ottimistico ogni LP esegue gli eventi in
maniera aggressiva senza considerare se ci sono dei vincoli rispetto ad eventi
eseguiti negli altri LP. Il Time Warp di M.Fujimoto è un modello ottimistico

47

Figura 3.5: Calcolo Eot ed Ecot in un modello di simulazione parallelo

in cui la ricezione di un messaggio da parte di un LP è gestita in questo
modo:

• se l'evento remoto ha un tempo di esecuzione maggiore dell' LVT (Lo-
cal Virtual Time) lo inserisce semplicemente nella FEL (Future Event
List);

• se il tempo di esecuzione dell'evento remoto ricevuto è minore dell' LVT
utilizza dei metodi di RollBack per ripristinare lo stato del sistema al
tempo dell'evento ricevuto.

Per implementare un meccanismo di RollBack si deve tenere traccia dei vari
stati del sistema ai tempi minori dell'LVT e utilizzare un meccanismo di anti-
message. Gli anti-message servono ad annullare eventuali messaggi mandati
nell'intervallo di tempo tra il processo con tempo di esecuzione ricevuto da
remoto e il tempo LVT ed hanno le seguenti proprietà:

• servono a cancellare i messaggi;

• ogni messaggio spedito da un LP ha un potenziale anti-message;

• l'anti-message ha un contenuto identico ad un messaggio ad eccezione
di un bit di segno;

48

• quando un anti-message e il rispettivo messaggio si incontrano nella
stessa coda avviene un annichilimento di entrambi;

• per �rimediare gli e�etti� dei messaggi precedentemente spediti un LP
manda un anti-message;

• la spedizione di un messaggio comporta anche una copia del messaggio
con segno negativo mantenuta nella coda di output dell'LP (coda degli
anti-message che potrebbero servire durante un eventuale rollback).

Durante l'esecuzione un LP che riceve un anti-message si può trovare nelle
seguenti situazioni:

• l'evento corrispondente non è ancora stato elaborato. In questo caso
e�ettua un annichilimento della coppia messaggio anti-message;

• il messaggio corrispondente è già stato elaborato. In questo caso ef-
fettua il rollback al tempo precedente all'elaborazione del messaggio e
l'annichilimento messaggio anti-message;

• il messaggio corrispondente non è ancora stato ricevuto. In questo
caso l'anti-message viene mantenuto in coda e l'annichilimento avverrà
in futuro quando si sarà formata la coppia messaggio anti-message.

Per e�ettuare il rollback si propongono tre stategie:

• cancellazione aggressiva : assume che tutte le computazioni e�et-
tuate siano sbagliate con conseguente spedizione degli anti-message
relativi e ripristino allo stato di ritorno;

• cancellazione lazy: gli anti-message non vengono mandati subito ma
si attende la riesecuzione degli eventi ripristinati. Se un messaggio
uguale è stato ricreato dalla nuova esecuzione non si manda un anti-
message;

• Lazy revalutation: simile a lazy cancellation ma in più viene
collezionato un vettore di stati. Si consideri il caso in cui arriva un
messaggio che viene processato. Subito dopo arriva un anti-message e
si deve rieseguire il rollback. Però tramite il vettore di stati ci si accorge
che la riesecuzione degli eventi ci porta di nuovo nello stesso stato. In
questo caso si può evitare il rollback. Il problema sta nel fatto di poter
capire tramite il vettore degli stati se la riesecuzione ci porta di nuovo
allo stesso stato.

49

Per supportare il rollback è necessario salvare la storia del processo logico.
Per ridurre l'utilizzo della memoria si può utilizzare il memory manage-
ment che è basato sul concetto di GVT (Global Virtual Time) che fornisce
un lower bound ai rollback che possono avvenire in futuro. Il GVT ha le
seguenti caratteristiche:

• il time stamp minimo di ogni messaggio o anti-message, parzialmente
o totalmente processato, all'interno del sistema in un dato momento.
Il GVT fornisce un lower bound al time stamp dei rollback futuri;

• lo spazio di memoria per eventi e salvataggi di stato, con tempo prece-
dente al GVT, possono essere deallocati;

• le operazioni di I/O con time stamp minori di GVT possono essere
eseguite.

Il GVT ci fornisce uno stato del sistema dal quale si può evolvere.
In una applicazione distribuita il calcolo di GVT può essere di�coltoso perchè
è di�cile reperire tutti i messaggi in transito.
In Git/BellCore tutti i processi sono congelati prima che le GVT computino.
Utilizzando un meccanismo di basso livello di comunicazione, tutti i messaggi
transienti garantiscono di arrivare a destinazione prima che la computazione
GVT inizia. Questo tipo di computazione lavora come segue:

• un coordinatore inizia la procedura congelando l'esecuzione di ogni
processo logico;

• dopo che tutti i messaggi transienti arrivano a destinazione, ogni pro-
cesso logico riporta un minimo valore locale al coordinatore;

• il coordinatore calcola il GVT come il valore minimo dei valori locali
ricevuti;

• il coordinatore manda in broadcast il valore GVT agli altri processi
logici.

3.5.4 Considerazioni sui modelli conservativi e ottimisti-

ci

Per implementare le tecniche Pdes si devono fare delle considerazioni per
capire quale modello utilizzare e come utilizzarlo.
Alcuni software, come possono essere i simulatori di rete, hanno dei moduli
che permettono di fare delle varie con�gurazioni della struttura. Il program-
matore tramite degli script o interfacce gra�che interagisce con questi moduli

50

e costruisce le strutture. In seguito indica quali sono gli eventi iniziali e fa
partire la simulazione.
Prima di iniziare una schedulazione parallela si deve dividere la struttura del
modello nei vari processi. Questa divisione può essere fatta manualmente.
In questo caso il programmatore deve fare del lavoro in più rispetto ad una
simulazione seriale e la responsabilità di eventuali squilibri tra i vari cluster
dipende dalla sua analisi.
Un altro modo per dividere il carico è tramite le tecniche di clustering. In
questo caso spetta allo schedulatore capire dove andare a posizionare le varie
componenti. Per calcolare i carichi delle componenti si possono utilizzare dei
metodi deterministici, utilizzati in sistemi in cui il carico può essere calcola-
to in maniera �certa� oppure metodi probabilistici che fanno delle stime sul
carico. Se si è certi che il carico durante la simulazione rimane costante è
vivamente consigliato utilizzare queste tecniche. Se esiste una variazione del
carico delle varie componenti si deve essere certi che non sia così eclatante
da squilibare in modo consistente i carichi dei vari cluster. Per ovviare a
questo problema si può calcolare il valore dei carichi durante la simulazione
e implementare l'algoritmo in modo che capisca quando lo squilibrio di cari-
co è eccessivo e in tal caso rifare la clusterizzazione. Per implementare una
situazione del genere bisogna stabilire una soglia di squilibrio dei carichi tra i
cluster che quando viene superata riclusterizza tutto. In alcuni sistemi questi
cambi di carico possono essere repentini e quindi si possono avere ricluster-
izzazioni frequenti aumentando il tempo reale di simulazione in maniera sig-
ni�cativa e non rendendo più conveniente l'utilizzo di tecniche parallele.
Per la sincronizzazione si possono utilizzare le tecniche conservative o ot-
timistiche. Nei modelli conservativi ci sono dei punti di bloccaggio e lo
scopo e quello di far �bloccare� il meno possibile la simulazione. Questo
può avvenire creando dei punti di con�ne tra i cluster con lookahead alto in
modo che ogni processo ha più �spazio� di esecuzione e cercando di equili-
brare il più possibile il carico. Con uno squilibrio elevato dei carichi c'è il
rischio che alcuni processi restino in attesa per molto tempo. Esistono vari
esperimenti su simulatori di rete che utilizzano questo metodo come Pdns
(modello applicato ad ns) e Omninet. Il clustering in questi due casi è man-
uale.
Per evitare i punti di bloccaggio possiamo utilizzare i modelli ottimistici. Per
utilizzare questi modelli dobbiamo porci le seguenti domande:

• quanta memoria ci vuole per salvare uno stato del sistema?

• quanto tempo ci vuole per ripristinarlo?

51

Alcuni modelli hanno un numero di variabili di stato elevato, salvare i vari
stati occuperebbe molta memoria e il ripristino troppo tempo. In modelli
in cui lo stato ha poche variabili e il ripristino è banale si consiglia questo
metodo.

3.5.5 Modelli Ibridi

Gli approci ibridi possono essere sviluppati aggiungendo delle tecniche ot-
timistiche ai meccanismi di sincronizzazione conservativa.
Lubachecky, Swartz e Maiss proposero un estenzione dell'algoritmo bounded
lag chiamato �ltered rollback. L'algoritmo bounded lag usa il concetto di dis-
tanza minima tra i processi logici come base per decidere quali eventi possono
essere eseguiti in maniera certa. In �ltered rollback il simulatore può violare
questi lower bound. Se si creano degli errori viene utilizzato un meccanismo
di rollback come Time-Warp. Tramite l'adattamento dei valori delle distanze
si possono utilizzare questi approci ottimistici all'interno di intervalli conser-
vativi.
Dickens e Reynols hanno proposto un'estenzione dell'algoritmo conservativo
SRADS dove viene permesso un �local rollback�. Questo approcio è comunque
applicabile ad ogni schema conservativo. In questo approcio il protocollo con-
servativo utilizzato da ogni processo ci de�nisce gli eventi sicuri che possono
essere eseguiti. Quando un processo non ha più eventi sicuri da eseguire
processa ottimisticamente altri eventi pendenti. Il risultato dell'esecuzione
degli eventi pendenti non può essere mandato agli altri processi. Questo ci
permette di non avere bisogno del meccanismo degli anti-message. Il rollback
utilizzato è �aggressivo�. Utilizzando questo approcio il tempo di attesa dei
processi viene utilizzato per eseguire eventi in maniera ottimistica.

52

Capitolo 4

NS

4.1 Le basi di Ns

Ns è un simulatore di reti ad eventi scritto interamente in C++, con l'ausilio
di un interprete OTcl(Figura 4.1). Ns usa due linguaggi di programmazione

Figura 4.1: Architettura di ns

poichè il simulatore ha due necessità principali; infatti, da una parte det-
tagliate simulazioni di protocolli richiedono un linguaggio di programmazione
che possa e�cientemente manipolare bytes, headers dei pacchetti, ed imple-
mentare algoritmi che utilizzino un gran numero di dati. Per queste attività
la velocità a tempo di esecuzione(run-time) è importante, mentre il tempo
impiegato per altre attività come l'esecuzione della simulazione, trovare degli

53

errori, correggerli, ricompilare e rieseguire di nuovo il tutto, è di gran lunga
meno importante. Dall'altro lato invece gran parte dello studio delle reti si
evolve variando parametri o cambiando alcune con�gurazioni, o esplorando
rapidamente un certo numero di scenari. In questi casi il tempo di iterazione
(cambiare il modello e rieseguire il tutto) è più importante.
Ns utilizza il C++ basato sulla gerarchia di classi cosidetta compilata e
Otcl basato sulla gerarchia cosidetta interpretata. Il C++ è rapido da
eseguire ma più lento da modi�care rendendolo adatto per dettagliate im-
plementazioni di protocolli. OTcl invece è lento da eseguire ma può essere
modi�cato molto rapidamente.
Le due gerarchie, compilata ed interpretata, sono strettamente correlate l'u-
na all'altra; infatti dal punto di vista dell'utente, c'è una corrispondenza 1:1
tra una classe nella gerarchia interpretata e una classe in quella compilata.
La radice di questa gerarchia è la classe TclObject. L'utente può creare
nuovi oggetti del simulatore attraverso l'interprete, all'interno del quale ven-
gono istanziati e dal quale vengono associati immediamente ad un oggetto
corrispondente nella gerarchia compilata. La gerarchia di classi interpretata
è automaticamnte stabilita attraverso i metodi de�niti nella classe TclClass,
mentre gli oggetti istanziati dall'utente, vengono associati all'oggetto della
gerarchia compilata attraverso i metodi de�niti nella classe TclObject.

4.2 La classe Simulator

Il simulatore, nel suo complesso, è descritto dalla classe Tcl denominata Sim-
ulator: tale classe fornisce un insieme di interfacce sia per con�gurare una
simulazione sia per scegliere il tipo di schedulatore di eventi da usare per
guidare la simulazione.
Uno script di simulazione generalmente inizia con una istruzione di creazione
di una istanza della classe Simulator del tipo set ns [new Simulator], cui fan-
no seguito una serie di istruzioni di chiamata a vari metodi per la creazione
di topologie di rete più o meno complicate e per la con�gurazione di tutta
una serie di aspetti della simulazione.
Quando viene creato, in OTcl, un nuovo oggetto di simulazione, la procedura
di inizializzazione esegue le seguenti operazioni:

1. inizializza il formato dei pacchetti da usare per la simulazione;

2. crea uno schedulatore: è possibile scegliere diversi tipi di schedulatore,
oppure accettare direttamente quello di default (calendar scheduler);

54

3. crea opzionalmente un cosiddetto �null agent� , ossia una sorta di
�cestino� per i pacchetti simulati.

4.3 La gestione dei pacchetti

I pacchetti sono le entità che gli oggetti di Ns si scambiamo durante la sim-
ulazione. La gestione di questi oggetti comprende la de�nizione degli header
che contengono le informazioni dei protocolli da implementare e un mecca-
nismo per una loro veloce allocazione e deallocazione. In questo paragrafo
sono descritte le singole componenti che servono per la gestione dei pacchetti
in ns.

Header dei pacchetti

Gli header dei pacchetti sono le strutture dati che contengono le informazioni
di un protocollo. Per la creazione di un nuovo header, chiamato ad esempio
�newhdr�, si devono seguire i seguenti passi:

• creare una nuova struttura (chiamata �hdr_newhdr�); questa de�nizione
di struttura viene usata dal compilatore per calcolare l'o�set (espresso
in byte) dei vari campi; nessun oggetto di questo tipo di struttura viene
mai direttamente allocato.

• creare una classe statica per e�ettuare il linkage tra C++ e OTcl, in
modo che in OTcl sia disponibile la classe denominata PacketHead-
er/Newhdr;

• editare il �le ns/tcl/lib/ns-packet.tcl al �ne di abilitare il nuovo forma-
to di header.

La struttura �hdr_newhdr� de�nisce i campi contenuti nell'header e la loro
dimensione. Tale struttura deve inoltre fornire per ogni campo una funzione
membro che rappresenta una sorta di strato di �copertura di dati� (data
hiding) per quegli oggetti che desiderano leggere o modi�care i campi del-
l'header. Si tratta cioè di �funzioni membro pubbliche di accesso ai dati�
della struttura, che consentono operazioni sui dati nascondendo, agli ogget-
ti che richiedono tali operazioni, la struttura interna. Deve essere inoltre
de�nita una variabile membro statica, chiamata o�set_, che viene usata per
individuare l'o�set (sempre in byte) con il quale l'header è localizzato in un
generico pacchetto di ns. Per consentire l'accesso all'header del pacchetto
devono essere implementate due funzioni membro statiche:

55

• la funzione access() è quella che la maggior parte degli utenti dovreb-
bero scegliere per accedere a questo particolare header in ciascun pac-
chetto;

• la funzione o�set(), invece, viene usata dal PacketHeaderManager e
dovrebbe essere usata più raramente.

Per accedere all'header di un pacchetto puntato dalla variabile p, è su�ciente
usare l'istruzione hdr_newhdr::access(p).

La classe Packet

La classe Packet de�nisce la struttura di un pacchetto e fornisce le funzioni
membro per manipolare una lista libera di oggetti di questo tipo. La classe
Packet, de�nita nel �le packet.h, è derivata dalla classe base Event. Essa
contiene in primo luogo tre variabili private e una funzione di tipo friend. Tali
tre variabili private sono due puntatori (bits_ e data_) ed un intero (datal-
en_). Segue una variabile statica protetta (il puntatore free_ ad un altro
oggetto di classe Packet) e poi un certo numero di variabili e funzioni membro
pubbliche. Questa classe fornisce un puntatore (bits_) ad un generico vet-
tore di caratteri non segnati (unsigned characters), comunemente chiamato
BOB (che sta per bag of bits): in questo vettore sono memorizzati i campi
degli header di pacchetto. La variabile bits_ contiene appunto l'indirizzo
del primo byte del vettore BOB. Tale vettore è concretamente implementato
come una concatenazione di tutte le strutture de�nite per ciascun header di
pacchetto. Per convenzione, tali strutture hanno nomi che cominciano con
hdr_<qualcosa>. Generalmente, il vettore BOB rimane di dimensione �s-
sa durante una simulazione e la sua dimensione è registrata nella variabile
membro statica Packet::hdrlen_. La dimensione del vettore BOB viene im-
postata, direttamente tramite OTcl, quando viene con�gurata la simulazione
e, come detto, rimane generalmente invariata durante la simulazione, anche
se è previsto che la si possa variare dinamicamente. Gli altri metodi della
classe Packet servono per creare nuovi pacchetti e per memorizzare quelli
non più utilizzati in una lista libera privata. Le funzioni di Packet sono le
seguenti:

• alloc(): si tratta di una funzione di supporto comunemente usata per la
creazione di nuovi pacchetti. Questa funzione viene a sua volta tipica-
mente chiamata, in favore di un dato Agent, dal metodoAgent::allocpkt(),
mentre invece generalmente non viene invocata direttamente da altri
oggetti. Essa tenta per prima cosa di allocare un vecchio pacchetto

56

della lista libera e, se tale operazione non riesce (il che accade quan-
do l'indirizzo contenuto nella variabile free_ è nullo), alloca un nuovo
pacchetto usando l'operatore C++ denominato new.
E' importante sottolineare che gli oggetti della classe Packet e il vettore
BOB vengono allocati separatamente.

• free(): serve invece a �liberare� un pacchetto, restituendolo alla lista
libera. I pacchetti non vengono mai restituiti all'allocatore della memo-
ria di sistema: al contrario, essi sono memorizzati in una lista libera
quando la funzione free() viene invocata.

• copy(): crea una nuova e identica copia di un dato pacchetto, con
l'eccezione del campo denominato uid_, che invece deve essere unico
per ciascun pacchetto.

La Classe p_info

La classe p_info è usata come �colla� per collegare i valori numerici cor-
rispondenti ai vari tipi di pacchetti con i loro relativi nomi simbolici. Quan-
do un nuovo tipo di pacchetto viene de�nito, il suo codice numerico deve
essere aggiunto alla variabile �packet_t� ed il suo nome simbolico deve essere
aggiunto al costruttore della classe p_Info:

enum packet_t
{

PT_TCP,
. . .
PT_NTYPE // This MUST be the LAST one

} ;

c l a s s p_info
{

pub l i c :
p_info ()
{

name_ [PT_TCP]= " tcp " ;
. . .

}

}

57

Come si vede, la variabile packet_t è un enumerato, il cui ultimo elemento
deve sempre essere costituito dalla variabile PT_NTYPE.
La classe �p_info�, invece, presenta un omonimo costruttore che esegue il
predetto collegamento tra codici numerici e nomi simbolici dei pacchetti.

La classe PacketHeader

La classe PacketHeader costituisce la classe base con cui con�gurare un qual-
siasi header di pacchetto da usare nelle simulazioni. Essa essenzialmente
fornisce uno stato interno su�ciente per allocare ogni particolare header di
pacchetto nell'insieme di tutti gli header presenti in un dato pacchetto.

La classe PacketHeaderManager

La classe PacketHeaderMenager è usata per gestire l'insieme dei tipi di
pacchetti correntemente utilizzati dalla simulazione e per assegnare a cias-
cuno di essi un o�set univoco all'interno del vettore BOB.
Quando il simulatore si inizializza fa il mapping tra i nomi delle classi e i
PacketHeader corrispondenti e chiama una funzione Tcl della classe simulator
(create::packetformat) che crea un singolo oggetto della classe PacketHead-
erManager. Il suo costruttore collega la variabile OTcl denominata hdrlen_
(indica la lunghezza del BOB) alla variabile membro C++ hdrlen_ della
classe Packet. Questa operazione ha l'e�etto di settare la suddetta variabile
Packet::hdrlen_ al valore zero.
Dopo aver creato il gestore dei pacchetti (packet manager) il simulatore abili-
ta ciascuno degli header di pacchetto di interesse attraverso un ciclo che itera
una lista di prede�niti header di pacchetto, nella forma (hi,oi), dove hi è il
nome dell'i-simo header, mentre oi è il nome della variabile contenente la
posizione dell'header hi nel vettore BOB.
Il posizionamento degli header è e�ettuato dalla procedura allochdr() della
classe PacketHeaderManager. Questa procedura mantiene una variabile di-
namica hdrlen_ al valore dell'attuale lunghezza del vettore BOB, in modo
che sempre nuovi header di pacchetto possano essere abilitati.

4.4 Lo Schedulatore di eventi

Ns è un simulatore guidato ad eventi (event-driven). Attualmente, sono
previsti quattro diversi schedulatori ognuno dei quali è implementato usando
una di�erente struttura dati come coda di priorità:

• linked-list scheduler utilizza una lista linkata;

58

• heap scheduler utilizza un heap;

• calendar queue scheduler (lo schedulatore usato per default) utilizza una
struttura dati tipo un calendario da tavolo;

• real time scheduler tenta di sincronizzare gli eventi in tempo reale.

Lo schedulatore, quale sia la sua topologia, funziona nel modo seguente:

• sceglie l'evento successivo da eseguire: se la simulazione non è ancora
partita, si tratterà dell'evento di �start� della simulazione, invece a
simulazione già in corso, si tratterà dell'evento successivo all'ultimo
che è stato eseguito ed in fase di complementamento;

• esegue l'evento successivo �no al suo completamento;

• ritorna ad individuare l'evento successivo e così via, �no all'evento �nale
della simulazione (evento di �stop�).

L'unità di tempo utilizzata dallo schedulatore sono i secondi.
Il simulatore è progettato in modo che un solo evento possa essere eseguito
in un dato istante. Ciò signi�ca che, se fossero previsti due eventi per lo
stesso istante, il simulatore eseguirà comunque prima uno e poi l'altro: in
particolare, viene eseguito per primo l'evento che è stato schedulato per pri-
mo. A tal proposito, si tenga conto che gli eventuali eventi simultanei non
vengono riordinati in alcun modo dagli schedulatori, proprio in modo tale
che gli schedulatori rispettino, nell'esecuzione degli eventi, lo stesso ordine
con cui tali eventi sono stati schedulati dall'utente. Inoltre si deve segnalare
che non sono supportate le esecuzioni parziali degli eventi.
Un generico evento comprende generalmente un �ring time e una funzione
manipolatrice (detta �handler�) ed è de�nito dalla classe Event.

c l a s s Event {
pub l i c :

Event∗ next_ ;
Event∗ prev_ ;
Handler∗ handler_ ;
double time_ ;
scheduler_uid_t uid_ ;
Event () : time_ (0) , uid_ (0) {}

} ;

59

c l a s s Handler {
pub l i c :

v i r t u a l void handle (Event∗ event) = 0 ;
} ;

Nella de�nizione della classe Event sono incluse cinque variabili pubbliche ed
un costruttore. Le cinque variabili hanno il seguente signi�cato:

• �next_� è un puntatore al successivo evento nelle liste usate dallo
schedulatore;

• �prev_� è un puntatore al precedente evento nelle liste usate dallo
schedulatore;

• �handler_� è un puntatore ad un oggetto di classe Handler, ossia ad
un manipolatore di eventi, da chiamare quanto l'evento in questione
deve essere eseguito;

• �time_� è l'istante di tempo in cui l'evento deve essere eseguito;

• �uid_� è un identi�catore univoco dell'evento.

La classe denominataHandler contiene semplicemente una funzione virtuale
che dovrà essere specializzata tramite le classi da essa derivate.
Tornando invece alla classe Event, da essa vengono derivati due tipi di
oggetti fondamentali per ns:

• i pacchetti (classe Packet);

• le procedure at-event: si tratta di procedure Tcl che devono essere
eseguite nel momento in cui arriva un determinato istante (speci�cato
dall'utente). Questo strumento viene usato molto spesso negli script di
simulazione.

4.5 Gli Ns-Object

La classeNsObject è una classe derivata dalla classeHandler e dalla classe
TclObject. Questa classe è la classe base per gli oggetti del simulatore che
vengono utilizzati dalle librerie Tcl di ns per formare degli oggetti più com-
plessi (Nodi, SimplexLink etc) che servono per costruire le topologie di rete.
Gli oggetti derivati dalla classe NsObject possono essere anche utilizzati
come Handler_ della classe Event per la schedulazione di eventi.

60

Questi oggetti implementano delle funzioni che gestiscono i pacchetti e pos-
sono anche bypassarli ad altri NsObject. In poche parole gli oggetti più
complessi creati dalle librerie Tcl sono formate dalla concatenazione di questi
oggetti.
Le classi che derivano da NsObject devono implementare la classe virtule
void recv(Packet*, Handler* callback = 0), de�nita come classe virtuale in
NsObject, che serve per la gestione di un pacchetto quando viene ricevu-
to da un'oggetto di questo tipo. Nella classe NsObject viene implementata
la funzione handle (funzione virtuale di Handler) che viene utilizzata dagli
schedulatori per eseguire un evento. Questa funzione esegue la funzione recv
con Handler 0. Alcuni NsObject possono voler fare qualche operazione di-
versa all'atto dell'esecuzione. In questo caso basta rimplementare la funzione
handle() nella classe derivata da NsObject.

4.5.1 Connector

La classe Connector viene utilizzata come classe base di NsObiect uni-
direzionali. Questa classe contiene due istanze ad altri NsObject: target_
e drop_. L'istanza target_ è utilizzata nella funzione send() per passare
il pacchetto all'oggetto puntato tramite la chiamata alla funzione recv() di
quest'ultimo. Comunque le classi che derivano da Connector possono im-
plementare la recv() a propria discrezione.
L'istanza ad un oggetto drop_ è utilizzata per la simulazione della perdi-
ta dei pacchetti. Le funzioni drop() vengono utilizzate per il passaggio dei
pacchetti all'NsObject che si occuperà della perdita dei pacchetti.

4.5.2 BiConnector

La classe BiConnector viene utilizzata come classe base di NsObject bidi-
rezionali. Questa classe contiene tre istanze ad altri NsObject: uptarget_,
downtarget_ e drop_. La variabile drop_ ha la stessa funzione che ha nel-
la classe Connector, cioè punta ad un NsObject che simula la perdita
dei pacchetti. Le variabili uptarget_ e downtarget_ puntano a due NsOb-
ject simulando un passaggio di pacchetti bidirezionale per questo oggetto. Le
funzioni virtuali SendDown() e SendUp() (implementate nelle classi derivate)
utilizzano rispettivamente le variabili downtarget_ e uptarget_ per passare i
pacchetti ai rispettivi NsObject puntati.

61

4.5.3 Agent

Gli Agent rappresentanno i punti terminali (end-points) in cui i pacchetti
di livello network vengono costruiti e/o letti. La classe Agent deriva dalla
classe Connector ed è implementata da una parte in C++ ed una parte in
OTcl.
La classe Agent contiene uno stato interno, ossia un insieme di variabili il
cui contenuto viene usato per assegnare valori a vari campi di un pacchetto
simulato, prima che questo venga inviato. Questo stato può essere modi�cato
da qualsiasi classe derivata dalla classe Agent.
La classe Agent supporta meccanismi di generazione e di ricezione di pac-
chetti. Le funzioni per allocare un nuovo pacchetto sono le seguenti:

• allocpkt() alloca un nuovo pacchetto (assegnando opportuni valori alla
maggior parte dei campi dei corrispondenti header), restituendo come
risultato un puntatore di esso;

• allocpkt(int) è del tutto analoga alla precedente, con la di�erenza che,
oltre ai campi dell'header del pacchetto, viene anche allocato un payload
di n byte, dove n viene fornito come argomento.

Nella classe Agent sono anche de�nite le funzioni membro timeout() e recv()
che si prevede vengano sovrapposte dalle classi derivate. Il metodoAgent::recv()
è sostanzialmente il principale �punto di entrata� per un Agent che riceve pac-
chetti. La classe Agent ha un puntatore app_ che punta all'applicazione che
si appoggia all'Agent considerato. Se tale puntatore risulta non nullo, quan-
do un Agent riceve un pacchetto invoca il metodo recv() dell'applicazione,
in modo che quest'ultima, prendendo in consegna il pacchetto dall'Agent di
trasporto ricevente, lo tratti nel modo previsto, dopodichè il pacchetto viene
�liberato� tramite la procedura Packet::free().
Nella creazione di un Agent si possono osservare due cose:

• in primo luogo, non tutti gli Agent attualmente implementati preve-
dono un proprio metodo recv() : solo gli Agent che possono essere usati
come ricevitori di pacchetti prevedono questa funzione. Ovviamente,
questo signi�ca che il metodo recv() viene specializzato negli Agent
utilizzabili come ricevitori, mentre invece non viene specializzato per
gli Agent non destinati a ricevere pacchetti, i quali quindi ereditano il
metodo Agent::recv() della loro classe base, anche se tale metodo non
viene mai invocato.

• in secondo luogo, il metodo recv(), qualora previsto, risulta diverso da
Agent ad Agent, come è ovvio che sia.

62

Per creare un nuovo Agent, bisogna fondamentalmente compiere le seguenti
operazioni:

• decidere la sua struttura ereditaria e creare le opportune de�nizioni di
classe;

• de�nire il metodo recv() ed eventualmente il metodo timeout();

• de�nire ogni necessaria classe timer;

• de�nire le funzioni per l' OTcl linkage;

• scrivere il codice OTcl necessario per accedere all'agente;

• ricompilare ns per rendere �operative� le modi�che e�ettuate.

Application

La classe Application rappresenta la classe base per le possibili appli-
cazioni associate ad un Agent. Questa classe ha un'istanza all'Agent as-
sociato ad essa. L'assegnamento avviene tramite il comando attach-agent
de�nito nella sua funzione command(). Nella funzione command vengono
chiamate delle funzioni virtuali dichiarate nella classe. Queste funzioni pos-
sono essere implementate nella classe derivata che rappresenta ogni speci�ca
applicazione:

• la funzione start() serve per far partire l'applicazione;

• la funzione stop() per fermare l'applicazione;

• la funzione send() per mandare nbytes ad un suo pari;

• la funzione recv() per la ricezione di nbytes.

• la funzione resume() indica all'applicazione che l'agent ha mandato
tutti i dati �no a quel punto nel tempo.

Alcune applicazioni possono essere implementate in OTcl, sempre derivando
la classe Application, oppure in C++ e OTcl oppure solo in C++.

63

Timer

I Timer sono degli oggetti scritti in C++ che derivano solamente dalla
classe Handler e quindi possono essere usati solamente in classi C++, ma
hanno la particolarità che possono essere utilizzati nel campo handler_ della
classe Event per la schedulazione (attenzione a non confondere questi
tipi di timer con quelli derivati dalla classe Timer scritta in OTcl,
che utilizza un'altro meccanismo ed in cui è possibile chiamare
un'istanza negli script Tcl con i rispettivi comandi). La maggior parte
di questi Timer derivano dalla classe TimerHandler che è caratterizzata dalle
seguenti funzioni:

• sched(double delay) schedula il timer tra delay secondi;

• resched(double delay) rischedula un timer tra delay secondi (il timer
deve essere pending);

• cancel() cancella un timer pending;

• status() ritorna lo stato del timer (TIMER_IDLE che non deve es-
sere rischedulato, TIMER_HANDLING che può essere rischedulato,
TIMER_PENDING che può essere cancellato).

• virtual void expire(Event *) deve essere implementata nella classe che
deriva il timer. E' chiamata dalla funzione handle() del timer e può
essere utilizzata per chiamare resched() qualora si vuole rischedulare
un evento timer;

• virtual void handle(Event *) può essere implementata nella classe deriva-
ta è identi�ca la funzione che verrà chiamata dalla routine di schedu-
lazione per l'esecuzione.

Nella classe TimerHandler sono de�nite anche due variabili:

• status_ lo stato corrente del timer;

• event_ l'evento consumato dal timer.

4.5.4 Queue

Le queues rappresentano la locazione dove i pacchetti possono essere con-
tenuti o scartati. La coda può essere bloccata �nchè non si libera il canale
dove i pacchetti devono passare. La classe C++ Queue è una classe derivata
da Connector è viene utilizzata per implementare vari tipi di code (CBQ,

64

DropTail, FQ, SFQ etc). Le funzioni principali di questa classe sono enque()
e deque(), due funzioni virtuali implementate dalle classi derivate che ser-
vono per inserire e togliere elementi dalla coda e una funzione recv() che
serve per ricevere i pacchetti da un altro NsObject. Questa classe è carat-
terizzata dalle seguenti variabili: qlim_ indica il numero di pacchetti che la
coda può contenere, blocked_ indica se il link in cui è inserita è bloccato (0
no 1 si) e la variabile qh_ che è un'istanza ad un oggetto di tipo Queue-
Handler che viene istanziata alla creazione della coda. L'oggetto Queue-
Handler quando viene inizializzato contiene la referenza all'oggetto Queue
a cui appartiene. Questo lo fà nel costruttore di Queue usando l'espres-
sione qh_(*this). Quando la coda riceve un pacchetto se il link è libero fa
transitare il pacchetto direttamente e setta il canale come blocked altrimenti
lo mette in coda. Quando viene mandato il pacchetto viene mandato an-
che il puntatore al QueueHandler che verrà schedulato da un Ns-Object
in seguito. La funzione handle() di questo oggetto quando è invocata per
l'esecuzione esegue la funzione resume() di Queue che serve a prendere un
pacchetto in coda e mandarlo nel link. Se non trova nessun pacchetto in coda
setta il link come libero.
Nella classe Queue c'è una variabile pq_. Questa variabile è un puntatore
ad un oggetto PacketQueue che implementa una struttura per i pacchetti
in coda se non viene implementata nelle sottoclassi.

4.5.5 errorModel

Un modulo di errore simula errori di livello �sico (link-level errors) oppure
perdite, tramite due distinti meccanismi: la presenza di errori su un pacchet-
to è indicata settando l'apposito error �ag nel common header del pacchetto
stesso, mentre invece la perdita completa del pacchetto viene simulata con-
segnando il pacchetto, invece che al suo destinatario, ad un apposito drop
target.
In una simulazione, gli errori possono essere generati tramite un modello
molto semplice, speci�cando un tasso di errore sui pacchetti, oppure tramite
modelli statistici ed empirici più complessi. Al �ne di supportare un'ampia
varietà di tali modelli, l'unità di errore può essere speci�cata in termini di
pacchetti o di bit oppure essere basata sul tempo (timer-based). La classe
ErrorModel è derivata dalla classe base Connector. Di conseguenza, essa
eredita alcuni metodi per �agganciare� oggetti (come i pacchetti), come ad
esempio i metodi target() e drop-target(). Se esiste un drop target, esso riceve
tutti i pacchetti che sono stati �corrotti� dal modello di errore. Altrimenti,
il modello di errore semplicemente setta il �ag error del common header del

65

pacchetto, in modo da demandare agli agenti di trasporto la responsabilità
di gestire gli errori.
La classe ErrorModel contiene sia i meccanismi sia la �politica� per la perdi-
ta dei pacchetti. In particolare, il meccanismo per la perdita dei pacchetti è
gestito dal metodo recv(), mentre invece la �politica� per la gestione dei pac-
chetti corrotti è eseguita dal metodo corrupt(). La classe ErrorModel imple-
menta solo una semplice politica basata su un singolo tasso di errore, espresso
in termini di pacchetti o di bit. Politiche più so�sticate possono invece es-
sere implementate derivando apposite classi da ErrorModel e ride�nendo il
metodo corrupt().

4.5.6 LinkDelay

La classe LinkDelay è una classe derivata da Connector e serve per sim-
ulare il tempo che un pacchetto impiega per attraversare un link. Questo
oggetto, tramite la funzione recv(), riceve un un pacchetto e un Handler (di
solito un QueueHandler), calcola il tempo che il pacchetto ci mette ad at-
traversare il link tramite la seguente funzione:
txttime(Packet *p){ 8. ∗ hdr_cmn :: access(p)− > size()/bandwidth_ }
e schedula due eventi. La schedulazione di questi eventi dipende dalla vari-
abile dinamic_ che stabilisce se l'oggetto è dinamico oppure no.
Un oggetto non dinamico schedula un evento riferito all'oggetto target_ con
ritardo txttime(p)+delay_ e un evento riferito all'Handler con ritardo txt-
time(p).
Per un LinkDelay dinamico invece di schedulare l'evento riferito al target_
inserisce il Packet in una coda interna e schedula se stesso con ritardo txt-
time(p). L'esecuzione dell'handle relativo a LinkDelay toglie un elemento
dalla coda e manda in esecuzione una funzione send() che a sua volta esegue
target_->recv(Packet,0) per mandare il pacchetto all'NsObject successivo.

4.6 Node

Un nodo è un TclObject composto da NsObject. Possiamo vedere il nodo
come un contenitore di NsObject collegati tra loro. Osservando la struttura di
un nodo unicast (Figura 4.2) possiamo notare le componenti address classifer
(classifer_) e port classifer (dmux_) che servono a distribuire i pacchetti
entranti nel nodo negli agenti o negli outlink corretti.
Tutti i nodi hanno le seguenti componenti:

• un indirizzo (id_) univoco;

66

Figura 4.2: Nodo unicast

• una lista di neighbors (neighbor_);

• una lista di agenti (agent_);

• un routing module.

4.6.1 Classi�er

Ns simula la ricezione di un pacchetto da parte di un nodo e la relativa analisi
per trovare la destinazione tramite gli oggetti di tipo Classi�er. La classe
Classi�er deriva dalla classe NsObject che a sua volta viene derivata dalle
classi che implementano i vari classi�catori. Ogni classi�catore contiene una
tabella degli oggetti simulati indicizzata tramite uno slot number. Lo scopo
del classi�catore è quello di determinare lo slot associato con l'oggetto des-
tinazione del pacchetto in arrivo ed indirizzare il pacchetto verso il percorso
esatto. Quando un classi�catore riceve un pacchetto si trova lo slot associato
con la destinazione tramite una funzione classify() che è de�nita diversa-
mente in ogni classi�catore.
Ns supporta questi tipi di classi�catori:

• Address Classi�er: supporta l'unicast routing e applica un bitwise
shift e una mask operation all'indirizzo di destinazione del pacchetto
per produrre uno slot number;

67

• Multicast Classi�er: classi�ca i pacchetti in base all'indirizzo sor-
gente e destinazione (gruppo). Esso mantiene una tabella hash che
assegna ogni source/group ad uno slot;

• Multipath Classi�er: quando si hanno più destinazioni con lo stesso
costo di routing li usa tutte simultaneamte;

• Hash Classi�er: è usato per classi�care un pacchetto che ha un
particolare �usso;

• Replicator: non usa la funzione classify() ma mantiene una tabella
di n slot. Per ogni pacchetto in arrivo produce n copie dell'oggetto e li
manda a tutti gli n slot.

4.6.2 Routing

L'implementazione di un routing in ns consiste in un blocco di tre funzioni:

• routing agent: serve a scambiare i pacchetti di routing con i vicini;

• route logic: usa le informazioni dei routing agent, oppure quelle
globali in caso di routing statico, per calcolare le computazioni di
routing;

• classi�er: usa la tabella di routing per indirizzare i pacchetti.

L'oggetto routing module guida i tre blocchi di funzioni descritte in prece-
denza e si interfaccia con i nodi organizzando i classi�catori.

4.7 Simplex Link

Il link è un contenitore di NsObject che serve a collegare due nodi. La classe
Link è una classe standard OTcl, utilizzata come classe base per la creazione
di link. La classe SimpleLink (Figura 4.3) è una classe derivata da Link che
simula una connessione point to point tra due nodi. Ci sono cinque istanze
a variabili che identi�cano il simplex-link:

• head_ : il punto di entrata del link;

• queue_ : referenza alla coda del link;

• link_ : referenza all'oggetto che simula i tempi di transizione dei
pacchetti nel link (LinkDelay);

68

Figura 4.3: Simplex Link

• ttl_ : referenza all'oggetto che manipola il campo ttl in un pacchetto;

• drophead_: referenza che punta all'oggetto che gestisce i pacchetti che
vengono �droppati� dalla coda.

In aggiunta ci sono le referenze ad oggetti per il trace:

• enqT_: referenza all'oggetto che traccia i pacchetti in entrata nella
coda;

• deqT_: referenza all'oggetto che traccia i pacchetti in uscita dalla coda;

• drpT_: referenza all'oggetto che traccia i pacchetti �droppati� dalla
coda;

• rcvT_: referenza all'oggetto che traccia i pacchetti che raggiungono il
nodo destinazione.

Per il collegamento con i nodi, ns da la referenza head_ ad un oggetto del
nodo sorgente e all'ultimo elemento del link da la referenza head_ del nodo
destinazione. Per creare un link bi-direzionale ns utilizza due simplex-link.

69

Capitolo 5

Pdnet

5.1 Motivazioni

Pdnet è un simulatore di reti scritto interamente in C++ strutturato in mo-
do che l'implementazione di Scheduler Paralleli sia fatta semplicemente.
In questa versione sperimentale sono implementate solo le basi del funzion-
amento di una rete perchè lo scopo dell'esperimento è quello di testare uno
scheduler parallelo in esso.
Pdnet prende spunto dal funzionamento di ns con l'aggiunta di varianti strut-
turali che consentono una facile implementazione di scheduler paralleli. Le
caratteristiche principali di Pdnet sono le seguenti:

• struttura centralizzata: le componenti del simulatore si scambiano le
entità tramite la classe principale. Questa implementazione serve a
sempli�care il calcolo statistico sul passaggio dei pacchetti tra le com-
ponenti del sistema, che viene fatto nella classe centrale senza coinvol-
gere le altre strutture del simulatore. Queste statistiche sono utili per
l'applicazione di alcune tecniche di simulazione parallela in cui si deve
distribuire il carico negli LP (Local Process) coinvolti nella simulazione;

• struttura degli header dei pacchetti a livelli: serve ad avere una di-
mensione ridotta dei pacchetti utilizzati nella simulazione rispetto al
meccanismo utilizzato in ns. Nelle simulazioni parallele i messaggi pos-
sono essere formati dalle entità della simulazione, che nel simulatore
sono i pacchetti. Diminuendo la dimensione dei pacchetti diminuisce
la lunghezza dei messaggi remoti;

• gli oggetti contenitore derivano da un'unica classe base: alcune tecniche
di parallelizzazione hanno bisogno che la struttura sia divisa in atomi.

70

Una classe base unica che ha delle regole strutturali ben de�nite è
l'ideale per la de�nizione di atomi strutturali;

• riferimento delle schedulazioni ad alcuni oggetti particolari: per imple-
mentare semplicemente scheduler paralleli che spostano i contenitori
frequentemente tra gli LP. Gli eventi, siccome sono associati a delle
componenti di questi contenitori, possono essere facilmente trovati per
essere spostati;

• lo stato delle varie componenti è composto da semplici variabili: in
alcune tecniche di parallelizzazione lo stato del sistema, prima dell'ese-
cuzione di un evento, deve essere memorizzato per eventuali ripristini.
Se questo stato è composto da semplici variabili questa operazione si
può fare semplicemente;

5.2 Struttura

La Figura 5.1 rappresenta la struttura principale di Pdnet. La struttura del

Figura 5.1: Struttura Pdnet

simulatore è una struttura centralizzata in cui la classe principale è Pdnet.
Questa struttura consente ad ogni componente del simulatore di comuni-
care con un'altra componente tramite la classe Pdnet. Le componenti del
simulatore possono essere raggiunte gerarchicamente partendo dalla classe

71

principale. Le caratteristiche dell'oggetto Pdnet, che rappresenta il cuore del
simulatore, sono le seguenti:

• viene creato quando inizia la simulazione;

• ha un'istanza statica che permette alle altre componenti del simulatore
di comunicare con esso. Questa istanza si reperisce tramite la funzione
instance();

• inizializza, con�gura, esegue e termina la simulazione;

• ha un'istanza dello scheduler (s_);

• ha un'array di istanze (table_) agli oggetti container;

• utilizza un meccanismo di comunicazione con le componenti scheduler e
container tramite alcune funzioni, che utilizzano le istanze memorizzate
di queste componenti;

5.2.1 Scheduler

L'oggetto Scheduler identi�ca lo schedulatore di eventi in Pdnet. Per imple-
mentare uno scheduler in Pdnet si eseguono i seguenti passi:

• si crea una classe che deriva dalla classe virtuale Scheduler. Nella
classe creata si implementano le seguenti funzioni:

� void run(): funzione di routine;

� void insert(Event *): inserisce un evento in coda;

� Event *deque(): toglie il prossimo evento dalla coda restituendolo;

� Event *head(): restituisce il primo elemento della coda;

� void cancel(double): cancella un elemento con un determinato uid
(identi�catore evento) dalla coda.

• si associa il nome dello scheduler alla classe creata nella funzione Pdnet::SchedType(char
*t):

void Pdnet : : schedType (char ∗ t)
{

i f (s_!=0)
d e l e t e s_ ;

i f (strcmp (" heap " , t) == 0)

72

{
s_ = new HeapScheduler () ;

}
e l s e i f (strcmp ("Parheap " , t) == 0)
{

s_ = new ParScheduler () ;
}

}

La funzione SchedType() viene utilizzata per cambiare lo scheduler nelle
simulazioni di Pdnet. Attualmente gli scheduler disponibili sono due:

1. l'heap scheduler: utilizza una struttura heap come coda di priorità e
un meccanismo DES di tipo event-driven per la gestione degli eventi;

2. il ParScheduler : scheduler parallelo che utilizza un heap come coda di
priorità e MPI per la comunicazione tra gli LP.

La classe Pdnet ha una collezione di funzioni che servono a comunicare con
gli scheduler:

• schedule(): schedula un evento di routine. Utilizza la funzione insert()
dello Scheduler per inserire l'evento in coda;

• atSchedule(): schedula gli eventi iniziali della simulazione. Utilizza la
funzione insert() dello Scheduler per inserire l'evento in coda;

• deleteEvent(double uid): cancella l'evento in coda identi�cato da uid
utilizzando la funzione cancel() dello Scheduler.

5.2.2 Container

I Container sono gli oggetti che rappresentano la struttura atomica delle com-
ponenti di una rete da simulare. Ogni Container è identi�cato tramite un
indice univoco (Cid Container id) che rappresenta lo slot di Pdnet::table_ in
cui è contenuta la sua istanza. Quando un oggetto di questo tipo viene creato
si inserisce nella Pdnet::table_ tramite la funzione Pdnet::addContainer().
La classe container è una classe virtuale che viene utilizzata come classe
base per la creazione di svariati tipi di contenitori. Questa classe ha un pun-
tatore stable_ che punta ad un array di istanze di SObject che sono contenuti
nel container. Un SObject può essere inserito in un container tramite la fun-
zione container::addSobject().

73

Nella classe container sono de�nite due funzioni virtuali type() e handle()
che sono implementate dalle classi derivate. La prima funzione ritorna il
tipo di container mentre la seconda viene invocata quando la routine di es-
ecuzione del simulatore esegue un evento associato ad un oggetto contenuto
nel container.

5.2.3 SObject

Gli SObject sono gli oggetti che compongono i container e rappresentano i
punti di riferimento per le schedulazioni. Ogni SObject è identi�cato tramite
un indice univoco (Sid SObject id), all'interno del container in cui è con-
tenuto, che rappresenta lo slot di container::stable_ in cui è contenuta la sua
istanza. Un oggetto di questo tipo, ha una chiave univoca (Cid, Sid) all'inter-
no di Pdnet. Gli SObject possono essere composti da Object e il puntatore
SObject::table_ punta ad un array di istanze ad oggetti Object che sono
contenuti in SObject. Questi Object possono essere inseriti all'interno degli
SObject tramite la funzione SObject::addObject(). Una cosa importante da
sottolineare è che gli SObject non devono per forza contenere Object.
La classe SObject è una classe virtuale che de�nisce le seguenti funzioni
virtuali implementate dalle classi derivate:

• handle(): viene eseguita all'esecuzione di un evento associato con l'-
SObject;

• recv(): viene eseguita quando un SObject riceve un pacchetto diretta-
mente da un altro SObject senza e�ettuare schedulazioni (scambio di
entità all'interno dello stesso evento);

• type(): identi�ca il tipo dell'SObject.

5.2.4 Object

Gli Object sono oggetti che possono essere inseriti all'interno degli SObject.
Questi oggetti non sono punti di schedulazione ma servono a de�nire alcune
componenti di un SObject.
La classe Object ha due funzioni virtuali che vengono implementate dalle
classi derivate per ricevere (recv()) e mandare (send()) eventi ad altre com-
ponenti del simulatore.
Gli Object possono essere utilizzati per rappresentare singole componenti,
come un'applicazione all'interno di un Agent (che sarà un SObject), o per
costruire delle catene di oggetti all'interno di un SObject. In queste catene
non ci possono essere schedulazioni tra un Object ed un altro.

74

5.2.5 Regole per la creazione di strutture

Pdnet è stato creato per rendere semplice l'applicazione di tecniche di par-
allelizzazione. In alcune di queste tecniche si deve suddividere la struttura
da simulare in atomi che sono posizionati nei vari LP. Lo scambio di messag-
gi tra un atomo ed un altro avviene tramite delle schedulazioni con ritardo
maggiore di zero. Le strutture atomiche di Pdnet sono i container che hanno
come con�ne i punti di schedulazione. In base a questa osservazione possi-
amo dedurre che i container sono i nodi e i canali di una network.
All'interno del container ci sono degli SObject che vengono identi�cati tramite
la coppia di valori (Cid, Sid). Ogni oggetto che può essere un punto di rifer-
imento per una schedulazione deve essere di questo tipo. Oggetti di questo
tipo sono gli Agent, i Simplex Link (prima parte di un link), le NetCard
(seconda parte di link) etc. Un esempio può essere il collegamento tra due
nodi da parte di un link. Supponiamo che il nodo n1 comunica con il nodo
n2 tramite un link . I nodi sono creati come container e il link è diviso in due
parti nel punto in cui si e�ettua la schedulazione che simula il tempo che un
pacchetto impiega per attraversarlo. Le due parti del link sono create come
due SObject separati. Il primo SObject è inserito in n1 mentre il secondo in
n2. In questo modo il passaggio di un pacchetto da n1 a n2 avviene tramite
una schedulazione con ritardo maggiore di zero.

5.3 Packet

I Packet sono gli oggetti che simulano i pacchetti reali di una rete e servono
a rappresentare le strutture per la simulazione di protocolli.
La classe Packet è simile a quella di ns con relativo PacketHeaderMenag-
er (PacketMenager in Pdnet) che inizializza la lunghezza degli header da
utilizzare. Le funzioni statiche Packet::alloc() e Packet::free() servono ad al-
locare e deallocare un pacchetto. Il meccanismo utilizzato per l'allocazione e
la deallocazione degli oggetti Packet utilizza il metodo della lista di elementi
liberi, che è utile per avere un procedimento di allocazione e deallocazione
più veloce.
La di�erenza tra ns e Pdnet è dovuta alla struttura dell'header dei pacchetti.
L'accesso alle variabili della struttura che rappresenta un header è diretto, a
di�erenza di ns che utilizza delle funzioni membro per accedere ai dati. In ns
ogni header ha una posizione in un array chiamato BOB e la dimensione di
questo vettore è data dalla somma delle dimensioni di tutti gli header de�niti.
In Pdnet il BOB è diviso in livelli. Ad ogni livello sono associati un gruppo
di header. Ogni pacchetto può utilizzare un solo header per ogni livello. La

75

lunghezza del BOB è data dalla somma delle dimensioni massime delle strut-
ture degli header assegnate ad ogni livello. Quindi la posizione di un header
nel BOB è data dalla posizione assegnata al suo livello di appartenenza. I
livelli degli header sono i seguenti:

• il livello di comunicazione: caratterizzato dall'header hdr_cmn che con-
tiene alcuni valori che servono alla comunicazione, come la dimensione
reale del pacchetto e gli o�set degli altri livelli. E' allocato all'inizio del
BOB;

• il livello data link (LEVELDL): utilizzato per i protocolli dello strato
MAC della classi�cazione OSI (in questa versione di Pdnet non è stato
ancora implementato nessun protocollo di questo tipo);

• il livello IP (LEVELIP): utilizzato per i protocolli dello strato di rete
della classi�cazione OSI;

• il livello Trasporto (LEVELTR): utilizzato per i protocolli dello strato
trasporto della classi�cazione OSI (TCP,UDP etc);

• il livello Applicativo (LEVELAP): utilizzato per i protocolli degli strati
superiori a quello di trasporto della classi�cazione OSI.

Questa scelta architetturale della rappresentazione dei pacchetti è stata fatta
per diminuire la dimensione reale del pacchetto rispetto ad ns, in modo che lo
scambio di messaggi tra processi in scheduler paralleli produca uno scambio
di dati ridotto.
Per la creazione di nuovi header di pacchetto si eseguono i seguenti passi:

• si crea una nuova struttura per l'header e si de�nisce una costante
identi�cativa in hdr.h:

#de f i n e HDRUDP 3

s t r u c t hdr_udp
{

in t sport_ ;
i n t dport_ ;

} ;

• si inserisce nell'apposito livello della funzione init() del PacketMenager
il codice per valutare la dimensione dell'header. La dimensione di ogni
livello viene calcolata in base alla dimensione massima degli header
associati al livello.

76

void PacketMenager : : i n i t () {
i n t d l e v e l = 0 ;
i n t maxSize = s i z e o f (s t r u c t hdr_cmn) ;
unsigned i n t max ;
Packet : : hpos_ = new in t [NLEVEL] ;
whi l e (d l e v e l < NLEVEL)
{

switch (d l e v e l)
{

case LEVELDL:
max = 0 ;
Packet : : hpos_ [LEVELDL] = maxSize ;
maxSize += max ;
break ;

case LEVELIP :
max = 0 ;
Packet : : hpos_ [LEVELIP] = maxSize ;
i f (max < s i z e o f (s t r u c t hdr_ip))

max = s i z e o f (s t r u c t hdr_ip) ;
maxSize += max ;
break ;

case LEVELTR:
max = 0 ;
Packet : : hpos_ [LEVELTR] = maxSize ;
i f (max < s i z e o f (s t r u c t hdr_tcp))

max = s i z e o f (s t r u c t hdr_tcp) ;
i f (max < s i z e o f (s t r u c t hdr_udp))

max = s i z e o f (s t r u c t hdr_udp) ;
maxSize += max ;
break ;

case LEVELAP:
max = 0 ;
Packet : : hpos_ [LEVELAP] = maxSize ;
maxSize += max ;
break ;

d e f au l t : r e turn ;
}
d l e v e l++;

}
Packet : : hdrlen_ = maxSize ;

}

77

La funzione PacketMenager::init() viene chiamata quando il simulatore
viene inizializzato per con�gurare la struttura del BOB, con il relativo
o�set dei livelli. Questa con�gurazione è valida per tutta la simulazione.

• si inserisce nell'apposito livello della funzione setHeader() di Packet il
codice per settare il tipo di pacchetto assegnato ad un livello.

void Packet : : setHeader (i n t l e v e l d l , i n t l e v e l i p ,
i n t l e v e l t r , i n t l e v e l ap)

{
s t r u c t hdr_cmn ∗cmn = (hdr_cmn ∗) hdr_ ;
/∗header l i v e l l o data l ink−mac∗/
switch (l e v e l d l)
{

d e f au l t :
cmn−>htype_ [LEVELDL] = HDRNO;
break ;

}
/∗header l i v e l l o ip ∗/
switch (l e v e l i p)
{

case HDRIP:
cmn−>htype_ [LEVELIP] = HDRIP;
break ;

d e f au l t :
cmn−>htype_ [LEVELIP] = HDRNO;
break ;

}
/∗header l i v e l l o d i t r a spo r t o ∗/
switch (l e v e l t r)
{

case HDRTCP:
cmn−>htype_ [LEVELTR] = HDRTCP;
break ;

case HDRUDP:
cmn−>htype_ [LEVELTR] = HDRUDP;
break ;

}
/∗header l i v e l l o app l i c a t i v o ∗/
switch (l e v e l ap)
{

78

de f au l t :
cmn−>htype_ [LEVELAP] = HDRNO;
break ;

}
}

Questa funzione viene chiamata dagli oggetti che creano un nuovo
pacchetto per inizializzare i livelli associati al pacchetto creato;

Un'altra cosa da notare è la struttura di hdr_cmn:

s t r u c t hdr_cmn
{

/∗ comunicazione ∗/
i n t s ize_ ;
i n t errcount_ ;

/∗ i n f o rmaz i on i header pacchetto ∗/
i n t htype_ [NLEVEL] ;

} ;

Il campo size_ contiene la dimensione reale del pacchetto, il campo errcount_
ci dice se il pacchetto è corrotto, l'array htype_ ci indica il tipo di header
associato a ciascun livello nel pacchetto.
Per capire come gli oggetti accedono ai campi di un pacchetto guardiamo il
seguente esempio:

/∗ recupera l ' header de l pachetto ∗/
unsigned char ∗h = (e−>pack_) −> getHdr () ;
/∗ recupera hdr_cmn che s i
∗ trova a l l ' i n i z i o de l BOB∗/
hdr_cmn ∗cmn = (hdr_cmn ∗) h ;
/∗ c o n t r o l l a se a l i v e l l o ip c ' è
∗ l ' header d e s i d e r a t o ∗/
i f (cmn−>htype_ [LEVELIP] == HDRIP)
{

/∗ recupera l ' header de l l i v e l l o ip ∗/
hdr_ip ∗ ip = (hdr_ip ∗)& h [Packet : : hpos_ [LEVELIP]] ;
/∗modi f i ca i l campo t t l d e l l ' header ∗/
ip −> ttl_++;

}

79

Gli o�set dei livelli sono contenuti nell'istanza statica dell'array Packet::hpos
che viene inizializzata dalla funzione PacketMenager::init() e i valori asseg-
nati risultano invariati durante la simulazione.

5.4 Event e schedulazioni

Gli Event sono le entità che gli oggetti di Pdnet si scambiano durante la
simulazione. La struttura di un Event ha i seguenti campi:

1. time_: tempo di esecuzione evento;

2. cid_: indice container di riferimento;

3. sid_: indice SObject di riferimento;

4. type_: tipo di Event (EVENTSTART, EVENTSTOP, EVENTHANDLE);

5. uid_: identi�cativo univoco Event;

6. pack_: pacchetto assegnato all'Event;

7. input_,output_: campi che servono per le schedulazioni parallele.

Gli oggetti si scambiano gli Event in maniera diretta o tramite schedulazioni.
Due oggetti che appartengono allo stesso container si scambiano un Event
in maniera diretta. In �gura 5.2 è rappresentato il meccanismo che utilizza
un SObject per mandare un Event ad un altro SObject dello stesso contain-
er utilizzando una comunicazione diretta. Il primo SObject comunica con

Figura 5.2: Comunicazione diretta

l'oggetto Pdnet chiamando la sua funzione send() con gli argomenti Event,
cid e rsid. L'argomento Event rappresenta l'entità da mandare all'SObject
identi�cato dalla coppia di valori cid e rsid. Siccome il container a cui manda
l'Event è quello in cui lui è contenuto, il valore del cid è uguale al suo. La
funzione send() di Pdnet aggiorna i campi cid e sid di Event, ricerca il con-
tainer associato con quel cid per passargli l'Event tramite la funzione recv()
del container. Questa funzione non fa altro che bypassare l'Event all'SObject
con quel sid nel container tramite la funzione recv() dell'oggetto destinazione.
Un'implementazione del genere si utilizza per rendere semplice il calcolo del

80

carico di un singolo Event coinvolgendo solo le funzioni della classe Pdnet
per e�ettuare questi calcoli e calcolandolo in base al numero di SObject che
coinvolge durante la sua esecuzione.
Quando un Event deve passare da un SObject in un container ad un altro
SObject contenuto in altro container utilizza un meccanismo di schedulazione
con ritardo maggiore di zero. Il primo SObject chiama la funzione sched-
ule(Event *,cid,sid,delay) di Pdnet in cui i parametri di input rappresentano
rispettivamente l'Event da schedulare, l'oggetto a cui fa riferimento (coppia
cid, sid), il ritardo si schedulazione. Questa funzione riempie i campi del-
l'Event in cui assegna il cid, il sid, il tempo di esecuzione (clock()+delay),
il tipo (EVENTHANDLE evento di routine) e l'uid. In�ne inserisce l'Event
nella coda degli eventi dello scheduler.
Quando lo scheduler esegue il ciclo di routine esegue gli Event chiamando la
funzione exec(Event *) di Pdnet che cerca il container associato con il cid ed
esegue la sua funzione handle(Event *). Questa funzione a sua volta cerca
l'SObject associato al sid di Event ed esegue la sua funzione handle(Event*).
Gli Event iniziali della simulazione sono creati tramite la funzione atSched-
ule(cid,sid,type,delay). Questa funzione crea un Event e gli associa cid,
sid, type, uid e tempo di schedulazione. Il tipo di Event può essere un
EVENTSTART o EVENTSTOP. Questo serve per far partire o stoppare un
Agent. La funzione handle di un container di tipo Node è la seguente:

void Node : : handle (Event ∗e)
{

i f (e−>type_ == EVENTHANDLE)
{

stable_ [e−>sid_] −> handle (e) ;
}
e l s e i f (e−>type_ == EVENTSTART)
{

Agent ∗a = (Agent ∗) stable_ [e−>sid_] ;
a−>s t a r t () ;
d e l e t e e ;

}
e l s e i f (e−>type_ == EVENTSTOP)
{

Agent ∗a = (Agent ∗) stable_ [e−>sid_] ;
a−>stop () ;
d e l e t e e ;

}
e l s e

81

{
d e l e t e e ;

}
}

Dal codice si nota che un Event di routine esegue la funzione handle() dell'-
SObject associato, un Event di tipo EVENTSTART esegue la sua funzione
start() e un Event EVENTSTOP esegue la sua funzione stop().

5.5 Node

L'oggetto Node è un container che serve a rappresentare un nodo della rete
da simulare. A di�erenza di ns in Pdnet i con�ni di un oggetto di questo tipo
sono diversi. La di�erenza sta nel fatto che in Pdnet i link semplici non sono
un oggetto indipendente dal nodo come in ns. Qui ogni link viene diviso
in due parti nel punto in cui in ns (rappresentato dalla classe LinkDelay)
viene e�ettuata una schedulazione. La prima parte del link viene inserita
nel Node sorgente e la seconda parte viene inserita nel Node destinazione.
Questo concetto dovrà essere preso in considerazione anche nelle possibili
future implementazioni di vari tipi di rete(wireless, satellitari etc..).

c l a s s Node : pub l i c conta ine r
{

p r i va t e :
i n t address_ ;
i n t cid_ ;
i n t head_ ;
i n t demux_ ;

pub l i c :
Node () ;
~Node () ;
i n t type () ;
void handle (Event ∗) ;
void setCid (i n t) ;
void setAddress (i n t) ;
i n t getAddress () ;
i n t addRoute (int , int , double) ;
i n t addSimplexLink (double , double , int , int , int , int , i n t) ;
i n t addNetCard () ;

82

void addDemux () ;
void p r i n t () ;
i n t addAgent (Agent ∗) ;
double getTime (i n t address) ; } ;

La classe Node è caratterizzata dalle seguenti variabili:

• address_ : indirizzo del nodo;

• cid_ : cid associato al nodo;

• head_ : identi�ca il sid dell'SObject che viene utilizzato per il routing;

• demux_ : identi�ca il sid dell'SObject che simula le porte associate agli
Agent;

Oltre alle funzioni implementate perchè virtuali nella classe base, in Node
sono implementate le funzioni che servono per settare i valori delle variabili
descritte sopra come setAddress(), le funzioni per inserire le componenti del
nodo come SimplexLink (prima parte del link), netCard(seconda parte del
link), demux etc. e le funzioni per settare il routing.

5.6 routing e demux

Gli SObject routing e demux servono a simulare l'instradamento dei pacchetti
in un nodo. La Figura 5.3 rappresenta un esempio di una struttura di un
nodo con un routing a tre livelli. Un pacchetto quando transita in un nodo
passa per l'oggetto routing che in base a delle tabelle di instradamento lo
manda in un link o in un'altro oggetto di tipo routing. Quando il pacchetto
transita nel link viene mandato in un altro nodo mentre se deve raggiungere
un Agent situato nel nodo ad un certo punto si troverà a transitare in un
SObject demux che contiene gli indirizzi delle porte associate a ciascun Agent.
In questa versione sperimentale di Pdnet si utilizza un routing statico ad

un livello. In ogni nodo si ha una variabile head_ che identi�ca il sid_ del
primo oggetto routing in cui si deve instradare il pacchetto. Ogni oggetto di
tipo routing contiene due tabelle:

• cn_: ogni record di questa tabella contiene i campi type, daddr, cid
e sid che rispettivamente indicano il tipo di SObject a cui fa riferi-
mento il record (ROUTING, SIMPLEXLINK, DEMUX), l'indirizzo di
destinazione associato all'oggetto a cui si riferisce , il cid dell'oggetto
di riferimento e il suo sid. La classe routing implementa una funzione
addConn() che serve ad inserire un record in questa tabella;

83

Figura 5.3: Esempio struttura nodo

• rt_ : ogni record di questa tabella contiene i campi address, time e din-
dex che rispettivamente indicano l'indirizzo di routing, il tempo stimato
per raggiungere la destinazione e l'indice di cn_ associato all'indirizzo.
La funzione Node::addRoute() serve a modi�care un record o a inserirne
uno nuovo per un determinato indirizzo.

Quando un pacchetto raggiunge l'oggetto routing questo oggetto legge il suo
indirizzo di destinazione e lo cerca in rt_. Se lo trova manda il pacchetto
all'oggetto in cn_ identi�cato con l'indice che ha trovato in rt_.
Quando inizia la simulazione si inizializzano tutte le tabelle di routing della
rete tramite la funzione init_routing() della classe Pdnet. In questa ver-
sione di Pdnet non sono toccate per tutta la simulazione perchè si utilizza
un routing statico.
La funzione di inizializzazione utilizza i delay e la banda dei link per stimare
un ritardo tra i nodi e tramite l'algoritmo di Floyd-Warshall calcola i cam-
mini minimi tra i nodi e i percorsi di questi cammini. In base a questi valori
la funzione init_routing() inserisce i record di routing nei nodi.
L'oggetto demux contiene la lista di porte assegnate agli Agent del nodo.
Quando un Agent è inserito nel nodo, tramite la funzione Node::addAgent(),
il numero di porta riferito all'Agent è inserito nel demux. Quando un pac-

84

chetto raggiunge il demux, tramite il numero della porta di destinazione, è
instradato verso l'Agent corrispondente.

Algoritmo di Floyd-Warshall

L'algoritmo di Floyd-Warshall risolve il problema dei cammini minimi tra
tutte le coppie di nodi di un grafo orientato G=(V,E) dove V sono i nodi del
grafo e E i suoi archi. Questo algoritmo ha un tempo di esecuzione O(V 3).
L'algoritmo considera i vertici �intermedi� di un cammino minimo, dove un
vertice intermedio di un cammino semplice p = (V1, V2, ..., Vn) è un qualunque
vertice di p diverso da V1 e da Vn cioè un qualunque vertice nell'insieme
{V2, V3, ..., Vn−1}. L'algoritmo di Floyd-Warshall è basato sulla seguente
osservazione. Sia V = (1, 2, ..n) l'insieme dei vertici di G, e si consideri
un sottoinsieme (1, 2.., k) di vertici per un qualunque k. Per ogni coppia
di vertici i, jεV si considerino tutti i cammini da i a j in cui tutti i vertici
intermedi sono presi in {1, 2, ..., k}, e sia p un cammino di peso minimo tra
di essi. L'algoritmo di Floyd-Warshall sfrutta una relazione tra il cammino p
ed i cammini minimi da i a j aventi tutti tutti i vertici intermedi nell'insieme
{1, 2, .., k − 1}. Questa relazione cambia se k è un vertice intermedio del
cammino p oppure no.

• Se k non è un vertice intermedio del cammino p, allora tutti i vertici
intermedi sul cammino p sono nell'insieme {1, 2, .., k − 1}. Quindi un
cammino minimo dal vertice i al vertice j con tutti i vertici intermedi
nell'insieme {1, 2, ..., k − 1} è anche un cammino minimo da i a j con
tutti i vertici intermedi nell'insieme {1, 2,, k}.

• Se invece k è un vertice intermedio sul cammino p, allora si spezza p
in i → k → j. Si ha un cammino minimo da i a k con tutti i vertici
intermedi nell'insieme {1, 2, .., k− 1}; analogamente il cammino da k a
j con tutti i vertici intermedi nell'insieme {1, 2, .., k− 1} è un cammino
minimo.

Sulla base dell'osservazione precedente si propone una nuova formulazione
ricorsiva delle stime di cammino minimo. Sia dk

i,j il peso di un cammino
minimo dal vertice i al vertice j con tutti i vertici intermedi nell'insieme
{1, 2,, k}. Quando k = 0, un cammino dal vertice i al vertice j senza
vertici intermedi aventi un numero maggiore di zero è un cammino che non
ha alcun vertice intermedio: di conseguenza esso ha al massimo un arco, e

85

quindi d0
ij = pesoarco(i, j).

dk
ij =

{
pesoarco(i, j) se k = 0
min(dk−1

ij , dk−1
ik + dk−1

kj) se k ≥ 1

La matrice Dn = (dn
ij) ci dà i cammini minimi. Per costruire i cammini mini-

mi si crea la matrice dei predecessori T con le seguenti formule di ricorrenza.
Per k = 0

T 0
ij =

{
NIL se i = j oppure pesoarco(i, j) =∞
i se i 6= j e pesoarco(i, j) <∞

Per k ≥ 1

T k
ij =

{
T k−1

ij se dk−1
ij ≤ dk−1

ik + dk−1
kj

T k−1
kj altrimenti

In base alle formule di ricorrenza si ha il seguente algoritmo:

Floyd−Warshall (pesoarco)
n = rows (pesoarco)
D = pesoarco
T = i n i z i a l i z z a z i o n e p r e d e c e s s o r i r i c o r r e n z a k=0
f o r k=1 to n

f o r j=1 to n
f o r i=1 to n

i f (D[i] [j] > D[i] [k]+D[k] [j]
T[i] [j]=T[k] [j]
D[i] [j]=D[i] [k]+D[k] [j]

Per aggiungere il routing nelle tabelle dei nodi del simulatore per ogni per-
corso i j la funzione init_routing() va a ritroso nella tabella T partendo dal
predecessore di j �no ad arrivare al nodo k successivo ad i in questo percorso.
Aggiunge nel record della tabella di routing di i con destinazione j l'indirizzo
di k.

5.7 SimplexLink e Netcard

SimplexLink e NetCard sono gli SObject che simulano un link reale .Quando
si crea un link tramite la funzione addSimplexLink() della classe Pdnet il
simulatore esegue i seguenti passi:

• crea un oggetto netCard nel nodo destinazione tramite la funzione
addNetCard();

86

• crea un oggetto SimplexLink nel nodo sorgente tramite la funzione
addSimplexLink(). A questo oggetto dà il cid e il sid del netCard in
modo che un pacchetto che passa nel SimplexLink è bypassato tramite
una schedulazione al netCard corrispondente;

• ritorna il cid e il sid del SObject SimplexLink.

La classe SimplexLink simula la prima parte del link dove è simulata una
coda di eventi tramite le variabili qmaxSize_ (dimensione massima della co-
da), qsize_ (dimensione della coda in un dato istante) e stime_ (tempo in
cui il link si libera). Oltre alla coda dei pacchetti contiene le variabili bw_
(bandwitdh del link) e delay_ (ritardo del link). La funzione recv() del Sim-
plexLink è chiamata quando un pacchetto raggiunge il link e si comporta nel
seguente modo: controlla se la coda è piena e se lo è scarta il pacchetto. Se
la coda non è piena calcola il tempo che il pacchetto ci mette a transitare
nel link, controlla se ci sono altri pacchetti in coda ed in base a questo si
comporta nel seguente modo:

• se non ci sono pacchetti in coda: controlla se ci sono altri pacchetti che
stanno transitando nel link in quel preciso momento. Se non ci sono
pacchetti in transito, setta stime_ con il valore del tempo corrente più il
tempo di passaggio di questo pacchetto nel link, schedula l'evento (au-
toschedulazione) che serve a liberare il link al tempo stime_ e l'evento
che simula l'arrivo al netcard al tempo stime_+ delay_. Se invece c'è
un pacchetto già in transito simula l'inserimento del pacchetto in coda
in questo modo:

� calcola stime_ come il tempo di partenza di questo pacchetto più
il tempo di passaggio nel link;

� incrementa la variabile qsize_ che indica il numero dei pacchetti
in coda;

� schedula l'evento che serve a decrementare la dimensione della
coda del link oppure a liberare il link se non ci sono altri eventi
in coda. Questo evento serve a simulare la partenza dell'evento
successivo in coda nel link. Questa schedulazione sarà riferita a se
stesso;

� schedula l'evento che simula l'arrivo del pacchetto nel netCard al
tempo stime_+delay_.

• se ci sono pacchetti in coda: inserisce un pacchetto in coda con il
meccanismo spiegato sopra.

87

La classe NetCard simula la seconda parte del link. Quando un pacchet-
to arriva nell'oggetto NetCard, questo oggetto veri�ca se il link è interrotto
oppure no (funzionalità non implementata in questa versione di Pdnet), in-
crementa il campo ttl_ del livello IP del pacchetto e inoltra il pacchetto verso
l'oggetto routing del nodo a cui appartiene.

5.8 Agent

Nella simulazione di protocolli e applicazioni oltre alle strutture per gli head-
er si devono de�nire gli Agent che sono gli end points delle applicazioni. Le
applicazioni possono essere implementate direttamente nell' Agent oppure
utilizzando, insieme all'Agent, un oggetto Application che simula il livello
superiore a quello di trasporto. L'utilizzo degli oggetti Application dipende
dai protocolli e dal tipo di applicazione che si vuole implementare. In alcune
applicazioni gli end points sono Agent dello stesso tipo mentre in altre appli-
cazioni sono Agent diversi. Gli oggetti di tipo Agent devono essere accoppiati
in base ai criteri di implementazione.
Gli Agent in Pdnet sono implementati da classi derivate dalla classe virtuale
Agent che de�nisce uno schema generale per questi tipi di oggetti. La classe
Agent è caratterizzata dalle seguenti variabili:

• app_: istanza ad un Object Application. Questo tipo di Object può
essere utilizzato per simulare i livelli superiori a quello di trasporto.

• address_: indirizzo del nodo a cui appartiene l'Agent;

• raddress_: indirizzo del nodo dell'Agent connesso con questo Agent;

• port_: la porta che identi�ca l'Agent;

• dport_: la porta che identi�ca l'Agent connesso con questo Agent;

• psize_: dimensione dei pacchetti che gestisce l'Agent;

• cid_: cid del nodo a cui appartiene l'Agent;

• sid_: sid dell'Agent;

• rsid_: il sid dell'oggetto a cui manda i pacchetti questo Agent. Di
solito è l'oggetto routing del nodo.

La classe Agent implementa delle funzioni che servono a settare e reperire i
valori delle variabili descritte sopra, connettere due Agent e ad aggiungere
un'applicazione all'Agent:

88

• addApplication(Application *): aggiunge un'applicazione all'Agent;

• getAddress(): ritorna l'indirizzo dell'Agent;

• setAddress(int a): setta l'indirizzo dell'Agent;

• getRAddress(): ritorna l'indirizzo dell'Agent remoto;

• setRAddress(int a): setta l'indirizzo dell'Agent remoto;

• getPort(): ritorna la porta associata all'Agent;

• setPort(int p): setta la porta dell'Agent;

• getRPort(): ritorna la porta associata all'Agent remoto;

• setRPort(int p): setta la porta dell'Agent Remoto;

• getPackSize(): ritorna la dimensione del pacchetto che questo Agent
gestisce;

• setPackSize(int s): setta la dimensione del pacchetto che questo Agent
manda;

• setConnection(int cid,int sid,int rsid): setta i parametri di connessione
dell'Agent.

La classe Agent de�nisce delle funzioni virtuali che devono essere implemen-
tate dalle classi che la derivano:

• virtual void start(): funzione che serve a far partire l'Agent;

• virtual void stop() : funzione che serve a fermare l'Agent;

• virtual void handle(Event *): esecuzione di un evento rispetto a questo
SObject;

• virtual void recv(Event *): riceve un pacchetto da un'altro SObject (di
solito il demux);

• virtual void setHeader(): setta i valori dell'header del pacchetto durante
la simulazione;

• virtual int type(): il tipo di SObject;

• virtual void printResult(): stampa i risultati della simulazione di questa
applicazione;

89

5.8.1 UdpAgent

La simulazione del protocollo Udp in Pdnet si realizza tramite due oggetti
UdpAgent di cui uno è il mandante e l'altro il ricevente. Questi Agent
comunicano con oggetti Application (unica implementazione CountApplica-
tion) che simulano l'applicazione associata ad essi.
La simulazione di questa applicazione parte tramite un EVENTSTART rifer-
ito all'UdpAgent mandante che esegue la funzione start() che non fa altro che
eseguire la sua funzione handle(). La funzione handle() come prima cosa con-
trolla se continuare a mandare pacchetti oppure no. Ci sono due casi in cui
la funzione stoppa:

• se viene settato un numero totale di pacchetti da mandare e sono già
stati mandati;

• se viene schedulato un evento EVENTSTOP che all'esecuzione chiama
la funzione stop() che setta la variabile state_ uguale a zero (condizione
di uscita).

Se invece l'invio dei pacchetti deve continuare procede nel seguente modo:

• richiede un pacchetto dall'applicazione (identi�cato tramite l'evento);

• setta i campi degli header del pacchetto Udp e IP ;

• setta la dimensione del pacchetto;

• manda il pacchetto all'oggetto del nodo con cui è collegato (di solito
oggetto routing) e schedula se stesso tra interval_ time.

Quando un pacchetto raggiunge l'oggetto UdpAgent ricevente, tramite la sua
funzione recv(), questo oggetto manda il pacchetto all'Application che è stata
associata ad esso tramite la funzione recv() di Application.
Due funzioni importanti della classe UdpAgent che vengono utilizzate per
settare i parametri dell'UdpAgent mandante sono:

• void setInterval(double i): setta l'intervallo tra la spedizione di un
pacchetto e il successivo;

• void setTotPack(int tp) : setta il numero totale di pacchetti da man-
dare.

90

5.8.2 TcpAgent e TcpAgentListener

TcpAgent e TcpAgentListener sono gli oggetti utilizzati per la simu-
lazione di applicazioni TCP. Il protocollo TCP non è trattato in questo
elaborato perchè va al di là dello scopo di questo progetto. L'unica cosa
che si deve introdurre sono i timer di ritrasmissione perchè hanno un peso
rilevante nella schedulazione e cancellazione di eventi.
Quando TcpAgent manda un pacchetto fa partire un timer:

• se il timer supera un certo tempo rimanda il pacchetto;

• se arriva la risposta prima della scadenza del timer, viene mandato un
nuovo pacchetto e resettato il timer.

Il timer utilizzato da TcpAgent utilizza un algoritmo dovuto a Jacobson(1988)
e funziona come segue. Per ogni, connessione TCP mantiene una variabile,
RTT, che rappresenta la migliore stima attuale del tempo di round-trip per
la destinazione in questione. Quando viene inviato un segmento si avvia un
Timer che serve a due scopi: per sapere quanto tempo richiede l'acknowl-
edgement e per innescare un'eventuale ritrasmissione. Se l'acknowledgement
torna indietro prima della scadenza del timer, TCP misura il tempo richiesto,
che chiameremo M . RTT viene così aggiornato secondo la formula

RTT = αRTT + (1− α)M

dove α è un fattore di perequazione che determina il peso dato al vecchio
valore. Generalmente corrisponde a 7/8.
Anche con valore di RTT valido, la scelta di un timeout di ritrasmissione
adatto è una questione complessa. Di norma, TCP utilizza βRTT , ma la
parte complessa sta nello scegliere β. Nelle implementazioni iniziali β era
sempre 2, ma l'esperienza ha insegnato che un valore costante era in�essibile
perchè non rispondeva al cambiamento della varianza. Nel 1988 Jacobson ha
proposto di rendere β proporzionale alla deviazione standard della funzione
di densità di probabilità relativa al tempo di arrivo dell'acknowledgement,
in modo che una varianza grande producesse un valore β elevato e vicever-
sa. In particolare, ha suggerito l'utilizzo della deviazione media come stima
approssimata della deviazione standard. Il suo algoritmo richiede di tenere
traccia di un'altra variabile perequata, vale a dire la deviazione D. Al ricevi-
mento di un acknowledgement è elaborata la di�erenza tra i valori previsto
e osservato, |RTT −M |. Un valore perequato di questo risultato è inserito
in D con la formula

D = αD + (1− α)|RTT −M |

91

dove α può essere essere o meno lo stesso valore utilizzato per perequare
RTT . Anche se D non equivale esattamente alla deviazione standard, è
un'approssimazione su�ciente; Jacobson ha mostrato come può essere elab-
orato utilizzando solo addizioni intere, sottrazioni e scorrimenti. La maggior
parte delle implementazioni TCP ora utilizza questo algoritmo e imposta
l'intervallo di timeout a

Timeout = RTT + 4 ∗D

La scelta del fattore 4 è arbitraria, ma presenta due vantaggi. Innanzi tutto,
la moltiplicazione per 4 può essere eseguita con un solo scorrimento. In
secondo luogo, riduce i timeout e le ritrasmissioni inutili perchè meno dell'1%
dei pacchetti giunge in un tempo superiore a quattro volte la deviazione
standard. In realtà Jacobson inizialmente proponeva di utilizzare 2, ma studi
successivi hanno dimostrato che 4 genera prestazioni migliori.
Per la realizzazione di un Timer non vengono utilizzati oggetti particolari
come in ns. In Pdnet il timer è de�nito all'interno della classe Agent e gli
eventi che simulano la scadenza del timeout sono schedulati con riferimento
all'Agent stesso. La classe TcpAgent è caratterizzata da uno stato interno
che comprende oltre ai campi utili per le connessioni Tcp anche i valori che
caratterizzano lo stato del timer:

• seq_: numero di sequenza da inviare;

• rtt_: round-trip timer;

• mtime_: tempo in cui sono settati i valori di timeout;

• crono_: tempo che passa dall'invio del pacchetto alla risposta;

• sdev_: deviazione standard;

• timeout_: valore di timeout;

• spack_: numero di pacchetti mandati;

• state_: stato della connessione TCP;

• rack_: ack ricevuti;

• rduplex_: ack duplicati ricevuti.

TcpAgent utilizza le seguenti funzioni per settare i timeout e mandare i
pacchetti:

92

• setTimeout(): esegue l'algoritmo di Jacobson per il calcolo del timeout;

• timeout(): fa partire un nuovo timeout e cancella un eventuale timeout
pendente;

• sendPack(): manda un pacchetto a TcpAgentListener.

TcpAgentListener riceve i pacchetti mandati da TcpAgent tramite la fun-
zione recv() che cambia il suo stato interno e spedisce un ack al mittente. Lo
stato interno di questi oggetti è de�nito dalle seguenti variabili:

• ack_: sequenza del pacchetto ricevuta;

• sack_: numero di ack mandati;

• rpack_: numero pacchetti ricevuti;

• duplex_: numero duplicati ricevuti;

• state_: stato della connessione TCP.

Quando viene invocata la funzione start() (tramite un evento EVENTSTART)
di TcpAgent, viene inizializzata la connessione tcp, vengono mandati i pac-
chetti ad TcpAgentListener che risponde con gli ack di risposta come descrit-
to nel protocollo TCP standard. Quando un TcpAgent deve mandare un
pacchetto fà le seguenti operazioni:

• setta i campi relativi agli header IP e TCP;

• setta la dimensione del pacchetto;

• manda il pacchetto e schedula se stesso ad un tempo pari al timeout
calcolato.

Se viene eseguito l'evento associato all'Agent vuol dire che la risposta non è
ancora arrivata entro il tempo di timeout: spedisce un pacchetto duplicato
e rischedula un nuovo evento di timeout (rischedula se stesso). Invece se
arriva la risposta cerca l'evento associato con il timeout e lo toglie dalla coda
di priorità (coda degli eventi), manda un nuovo pacchetto e rischedula un
nuovo evento di timeout. In�ne quando viene invocata la funzione stop() di
TcpAgent (tramite un evento EVENTSTOP) simula la chiusura del TCP e
termina.

93

5.9 Application

La classe Application è un Object che serve come classe base per l'imple-
mentazione di applicazioni. Questo Object è inserito in alcuni tipi di Agent
(SObject) e simula la gestione dei protocolli superiori a quelli di trasporto.
La classe Application è una classe virtuale utilizzata come classe base per le
applicazioni e de�nisce le seguenti funzioni:

• void addHeader(int ip,int tr): serve a settare i parametri che identi�-
cano gli header da utilizzare nel pacchetto nei livelli ip e di trasporto.
Questo settaggio serve perchè l'Agent richiederà un Packet (tramite un
evento) ed in ogni Packet quando è creato verrà de�nito l'header tramite
questi valori (questa operazione può essere fatta anche nell'Agent).

• virtual void recv(Event *): funzione implementata dalla classe derivata
che serve per ricevere un Evento;

• void send(Event *): funzione implementata dalla classe derivata che
serve per mandare un Evento;

• virtual int getNextPack(Event *): funzione implementata dalla classe
derivata chiamata dagli Agent per ricevere un pacchetto dall'Applica-
tion;

• getSpack() e getRpack() ritornano i valori delle variabili associate ai
pacchetti mandati e ricevuti;

• setSpack(int s) e setRpack(int s) settano i valori delle variabili associate
ai pacchetti mandati e ricevuti;

In questa versione del simulatore è implementata solo un'Application, la
countApplication che non fa altro che contare il numero di pacchetti man-
dati e ricevuti.

5.10 Creare una simulazione in Pdnet

L'esecuzione di Pdnet esegue i seguenti passi:

• inizializza il simulatore;

• inizializza la struttura di simulazione (topologia, tempo di simulazione,
scheduler utilizzato, routing);

• esegue la simulazione;

94

• restituisce i risultati.

Per creare una simulazione in Pdnet si procede creando una struttura nella
funzione topology della classe Pdnet nel seguente modo:

1. si de�nisce lo scheduler da utilizzare tramite la funzione Pdnet::schedType(char
*schedType);

2. si creano i nodi con la funzione Pdnet::addNode() che ritorna il cid del
nodo creato;

3. si creano i link tra i nodi tramite la funzione Pdnet::addSimplexLink(int
src,int dst,double bw,double delay,int qtype,int qsize) dove src è il cid
del nodo sorgente, dst il cid del nodo destinazione, bw la banda del link,
delay il ritardo del link, qtype la coda da utilizzare (unica implemen-
tazione DROPTAIL), qsize la dimensione della coda e ritorna la coppia
di valori cid, sid corrispondente al link creato;

4. si creano gli Agent, si settano eventuali parametri, si creano eventuali
applicazioni che si devono utilizzare e si attaccano agli Agent, si attac-
cano gli Agent ai nodi, si connettono tra loro gli Agent e si schedulano
gli eventi di partenza dell'invio di pacchetti ed eventuali eventi di stop;

/∗ c r e a z i one app l i c a z i on e udp∗/

UdpAgent ∗agent1 = new UdpAgent () ;
UdpAgent ∗agent2 = new UdpAgent () ;
agent1 −> setPackS ize (4 0 0) ;
agent1 −> s e t I n t e r v a l (0 . 0 0 7) ;
agent1 −> setTotPack (1 0 0) ;
countAppl i cat ion ∗c1 = new countAppl i cat ion (" agent1 ") ;
agent1 −> addAppl icat ion (c1) ;
SOBJ a1 = attackAgent (n0 , agent1) ;
SOBJ a2 = attackAgent (n5 , agent2) ;
connect ion (agent1 , agent2) ;
atSchedule (a1 . c id , a1 . s id ,EVENTSTART, 0 . 0) ;
atSchedule (a1 . c id , a1 . s id ,EVENTSTOP, 1 0 0 0 0 0 . 0) ;

/∗ c r e a z i one app l i c a z i on e tcp ∗/

TcpAgent ∗ tcp1 = new TcpAgent () ;
TcpAgentListener ∗ t cp l 1 = new TcpAgentListener () ;

95

SOBJ tagent1 = attackAgent (n0 , tcp1) ;
attackAgent (n5 , t cp l 1) ;
connect ion (tcp1 , t cp l 1) ;
atSchedule (tagent1 . c id , tagent1 . s id ,EVENTSTART, 0 . 0) ;
atSchedule (tagent1 . c id , tagent1 . s id ,EVENTSTOP, 1 0 0 0 0 0 . 0) ;

5. si inizializza il tempo virtuale della durata della simulazione tramite la
funzione simTime(double time).

96

Capitolo 6

Scheduler parallelo in Pdnet

6.1 Impacchettamento e spacchettamento dei

messaggi remoti

Nella progettazione di scheduler paralleli si devono ideare dei meccanismi di
sincronizzazione. Per utilizzare le tecniche di sincronizzazione gli LP devono
comunicare tra loro. I meccanismi di comunicazione in Pdnet utilizzano le
librerie MPI che forniscono un ambiente ideato per le parallelizzazioni.
I messaggi che gli LP si scambiano durante una simulazione sono composti
da variabili con tipi diversi. Per rendere semplice e trasparente l'impacchet-
tamento e lo spacchettamento dei messaggi di vario tipo si è creata un'inter-
faccia tra la libreria MPI e gli oggetti di Pdnet .
La classe CommBu�er è stata implementata a questo scopo ed caratteriz-
zata dalle seguenti variabili:

• char *mBu�er: il bu�er allocato;

• int mBu�erSize: la size del bu�er;

• int mMsgSize: la posizione del bu�er per la prossima allocazione;

• int mPosition: la posizione del bu�er per la deallocazione.

Le funzioni pack() e unpack() servono a impacchettare e spacchettare un dato.
In questa versione di Pdnet sono implementati i tipi di dato int, unsigned
int, double, unsigned double e string.

97

Il seguente codice descrive le funzioni per impacchettare e spacchettare
una stringa:

// pack una s t r i n g a
i n t CommBuffer : : pack (const unsigned char ∗d , i n t l en)
{

i f (l en == 0)
re turn pack (l en) ;

i n t r e t = pack (l en) ;
i f (r e t != MPI_SUCCESS)

re turn r e t ;
extendBuf fe r (l en ∗ s i z e o f (char)) ;
r e turn MPI_Pack((void ∗)d , len ,

MPI_UNSIGNED_CHAR, mBuffer ,
mBufferSize , &mMsgSize , MPI_COMM_WORLD) ;

}

// unpack a s t r i n g
i n t CommBuffer : : unpack (const unsigned char ∗d , i n t l en)
{

i n t r e t ;
i f ((r e t = MPI_Unpack(mBuffer , mMsgSize ,

&mPosition , (void ∗) d , len ,
MPI_UNSIGNED_CHAR, MPI_COMM_WORLD) != MPI_SUCCESS))
re turn r e t ;

r e turn MPI_SUCCESS;
}

6.2 Una tecnica di parallelizzazione centraliz-

zata

Questo paragrafo parla della tecnica di parallelizzazione sperimentata in
Pdnet.
Un sistema ha uno stato identi�cato dall'insieme delle variabili di stato e da
una coda di eventi. Questo stato può essere modi�cato con l'esecuzione di un
evento. L'esecuzione di un evento dipende da un insieme di variabili di input
(subset delle variabili di stato), genera un output che modi�ca un subset
di variabili di stato e modi�ca la coda degli eventi. Sia Si = (v0, v1, v2, v3)
l'insieme delle variabili di stato di un sistema ad un determinato tempo di

98

simulazione. Si suppone che con l'esecuzione dell'evento event lo stato delle
variabili del sistema cambi in Si+1 = (v0, v

1
1, v2, v3). Come si può notare

l'evento event ha modi�cato solo una variabile del sistema. Se si ha un
evento successivo che come variabili di input non dipende da v1 può essere
eseguito simultaneamente ad event. Questa idea parte dal presupposto che
in un sistema con uno stato contenente un gran numero di variabili, ogni
evento modi�cherà solo un sottoinsieme di variabili che rispetto al numero
totale è minimo. Quindi si può avere una buona probabilità che eseguendo un
evento l'output generato non andrà a toccare l'insieme di variabili di input
dell'evento successivo. Se questi due eventi non modi�cano le variabili di in-
put di un terzo evento allora sono tre gli eventi che possono essere eseguiti in
contemporanea etc. In poche parole se un evento ha il subset delle varibili di
stato di input che non viene modi�cato da eventi precedenti la sua esecuzione
può essere anticipata ed essere eseguito in parallelo con gli eventi preceden-
ti. Partendo da questo concetto si realizza l'algoritmo parallelo tramite un
meccanismo �centralizzato�. Si suppone ci siano n LP identi�cati come LP
0, LP 1 LP n-1, dove l'LP 0 è il �master� e gli altri LP sono gli �slave�.
Il master ha una coda di eventi da eseguire (Event Code EC) e una coda di
eventi eseguiti dagli slave ma non ancora veri�cati dal master per stabilire
se sono validi (Conditional Event Code CEC). Gli LP slave hanno una coda
di eventi inizialmente vuota. Quando inizia la simulazione il master prende
i primi n eventi da EC (oppure tutti gli eventi che ci sono se il numero di
eventi in coda è minore di n) e li divide nel seguente modo:

• il primo evento lo tiene per se;

• gli altri n-1 li manda uno per ogni slave. Ad ogni slave oltre all'evento
viene mandato lo stato attuale del sistema. Il master tiene traccia di
questi n-1 eventi inserendoli in CEC con il relativo stato di input.

Dopo questa suddivisione il master esegue il primo evento che è sicuramente
corretto perchè essendo il primo non ha nessuna dipendenza da altri eventi
e gli slave eseguono gli eventi assegnati che invece non è detto che siano cor-
retti.
Dopo l'esecuzione gli slave mandano i risultati all'LP master. I risultati com-
prendono un nuovo stato del sistema ed eventuali eventi futuri da eseguire. Il
master accoppia gli output ricevuti dagli slave con gli eventi relativi in CEC.
Dopo il primo passo il sistema si trova in una situazione in cui la CEC può
essere non vuota e il master ad ogni passo successivo al primo farà la seguente
operazione: controlla se il prossimo evento da eseguire si trova in EC oppure
in CEC:

99

• se si trova in EC ripete l'operazione, descritta sopra, di divisione negli
LP degli eventi in EC;

• se si trova in CEC controlla se l'evento che è stato eseguito da uno slave
è valido. Per la veri�ca della validità controlla se il sottoinsieme di
variabili di input da cui dipende l'evento è stato modi�cato da qualche
evento precedente.

� se l'evento è valido ripristina lo stato del sistema in base all'output
corrispondente e schedula eventuali eventi generati;

� se l'evento non è valido �butta via� il lavoro svolto dallo slave e lo
rischedula nella coda EC degli eventi da eseguire.

Ricapitolando abbiamo un master che esegue ciclicamente le operazioni de-
scritte sopra e degli slave che si mettono in attesa di ricevere un �lavoro� da
svolgere dal master. Quando gli slave ricevono il messaggio aggiornano il pro-
prio stato, svolgono il lavoro assegnato e restituiscono il risultato al master a
cui toccherà il compito di capire se è un �lavoro� valido oppure no. In poche
parole il �cervello� della simulazione è il master che coordina il lavoro, ne
esegue una parte e stabilisce se il lavoro eseguito dagli slave è valido oppure
no, mentre gli slave non �pensano� ma eseguono il lavoro a loro assegnato
senza capirne l'utilità (Figura 6.1).
Per implementare un algoritmo del genere bisogna capire bene il ruolo delle

Figura 6.1: Strategia centralizzata

variabili di stato del sistema e cercare per ogni evento di estrarre il sottoin-
sieme di variabili che lo riguarda. In alcuni modelli di simulazione trovare le

100

variabili �certe� che riguardano l'evento non è semplice. Per risolvere questo
problema si adotta la seguente strategia:

• si prende in considerazione un sottoinsieme di variabili che �potreb-
bero interessare� l'esecuzione dell'evento (sottoinsieme condizionato) e
si conservano come variabili di input;

• dopo l'esecuzione dell'evento si ha la certezza di quali siano le vari-
abili del sottoinsieme scelto che servono per il controllo. Nell'output si
indicano quali sono in modo che il controllo è fatto rispetto a queste
variabili che è di numero uguale o inferiore al sottoinsieme ipotizzato.

La strategia descritta sopra è utilizzata per aumentare la probabilità del nu-
mero di eventi validi.
Un'altra ottimizzazione dell'algoritmo può essere fatta per l'aggiornamento
degli slave. Infatti è inutile aggiornare lo stato globale dello slave quando pos-
siamo aggiornare un ristretto numero di variabili. Se si riesce a de�nire un
sottoinsieme di possibili variabili che �potrebbero interessare� l'esecuzione
dell'evento si aggiornano solo quelle. Quest'ultima ottimizzazione oltre a
diminuire il tempo computazionale per le operazioni di aggiornamento dello
stato degli slave serve a diminuire la lunghezza dei messaggi per la comuni-
cazione.

6.3 Implementazione dello Scheduler parallelo

centralizzato in Pdnet

Lo scheduler parallelo è implementato in Pdnet tramite la classe ParSched-
uler che eredita la classe HeapScheduler de�nita per l'implementazione
dell'heap scheduler.

c l a s s HeapScheduler : pub l i c Scheduler
{

protec ted :
Heap ∗h_;
FILE ∗ fdebug ;

pub l i c :
HeapScheduler () { h_= new Heap () ; }
~HeapScheduler () { d e l e t e h_;}
void run () ;
void i n s e r t (Event ∗) ;
void cance l (double) ;

101

Event ∗deque () ;
Event ∗head () ;

} ;

c l a s s ParScheduler : pub l i c HeapScheduler
{

p r i va t e :
Heap ∗hpar_ ;
i n t id c lu s t e r_ ;//Lp co r r en t e
i n t nc luster_ ;// numero LP t o t a l i

pub l i c :
ParScheduler () {hpar_ = new Heap () ; }
~ParScheduler (){ d e l e t e hpar_ ;}
void run () ;
void cance l (double) ;
Event ∗head () ;
i n t Recv (CommBuffer ∗ , i n t ∗) ;
void Send (i n t c l , CommBuffer ∗) ;
void stop (i n t c l) ;

} ;

Le strutture dati utilizzate per l'implementazione delle code di priorità degli
eventi sono l'heap h_, de�nito nella classe HeapScheduler, e l'heap hpar_
de�nito nella classe ParScheduler. L'heap h_ è utilizzato per simulare la EC
(Event Code) mentre hpar_ è utilizzato per simulare la CEC (Conditional
Event Code). La EC è la coda di priorità degli eventi che devono essere
eseguiti. La CEC è la coda di priorità degli eventi eseguiti dagli slave ma
non ancora veri�cati dal master. Le funzioni implementate in Parscheduler,
oltre a quella di routine (run()) e di cancellazione degli eventi (cancel()),
comprendono le funzioni Send() e Recv() che servono per mandare e ricevere
messaggi dal master agli slave e viceversa e la funzione stop() che serve al
master per comunicare agli slave che la simulazione è terminata. L'esecuzione
della funzione di routine (run()) inizia con l'assegnazione del ruolo degli LP
nel modello. L'LP con id 0 è il master mentre gli altri LP sono gli slave.
In fase di inizializzazione i processi slave svuotano la coda di priorità h_ e
si mettono in attesa di un messaggio dal master. I messaggi che possono
ricevere sono di due tipi:

• routine: un messaggio del genere è composto da un evento da eseguire
e dall'insieme delle variabili di stato del nodo a cui si riferisce l'even-

102

to. Lo slave quando riceve questo tipo di messaggio aggiorna lo stato
del nodo, esegue l'evento e crea un messaggio di risposta. Il messag-
gio di risposta è composto dai riferimenti agli SObject del nodo che
compongono lo stato di input dell'evento, dal nuovo stato del nodo
dopo l'esecuzione dell'evento e dai nuovi eventi che sono stati schedulati
dall'evento. In�ne lo slave manda il messaggio di risposta al master;

• stop: lo slave esce dalla simulazione.

Il ciclo di routine è eseguito dal master e ad ogni iterazione controlla se il
prossimo evento da eseguire si trova nella coda h_ oppure in hpar_. Nel
primo caso fà le seguenti operazioni:

• controlla se il tempo dell'evento da eseguire è minore o uguale al tempo
di simulazione previsto (altrimenti esce dal ciclo);

• estrae il primo evento dalla coda h_ e lo memorizza come evento e;

• per ogni slave estrae un evento dalla coda h_ (se il numero degli eventi
in h_ è minore del numero degli slave li estrae tutti) ed esegue i seguenti
passi:

� crea un oggetto CommBu�er;

� inserisce i dati che caratterizzano l'evento nel CommBu�er;

� inserisce le variabili di stato relative al container a cui l'evento si
riferisce nel CommBu�er (sottoinsieme condizionato);

� manda il CommBu�er allo slave corrispondente tramite la fun-
zione Send();

� memorizza il CommBu�er come input dell'evento;

� tiene traccia dell'evento memorizzando l'uid in un vettore che tiene
traccia degli eventi mandati agli slave;

� inserisce l'evento in hpar_.

• esegue l'evento e;

• riceve la risposta dagli slave;

• ricerca l'evento corrispondente in hpar_ tramite l'uid memorizzato nel
vettore che tiene traccia degli eventi e memorizza l'output ricevuto in
corrispondenza dell'evento.

Nel secondo caso invece fà le seguenti operazioni:

103

• estrae l'evento da hpar_ e controlla se le variabili di input dell'evento
sono state modi�cate da un evento precedente. Se sono state cambiate
inserisce l'evento in h_. Se non sono state cambiate cambia lo stato del
sistema in base ai valori di output ricevuti e schedula gli eventi generati
dall'evento eseguito dallo slave.

La metodologia utilizzata per interagire con lo stato del sistema è imple-
mentata tramite delle funzioni della classe Container, raggiunte tramite
l'istanza Pdnet indicando il numero del Container. La classe Container
interagisce con gli SObject contenuti in essa tramite delle funzioni de�nite
virtualmente nella classe SObject ed implementate in ogni oggetto SObject.
Questo meccanismo implica che ogni SObject creato deve essere predisposto
per supportare l'aggiornamento, il reperimento e il controllo del suo stato.
Un altro meccanismo poteva essere quello di memorizzare le variabili di stato
in unico vettore ma essendo i tipi delle variabili variegate si è preferito non
utilizzare questo ultimo metodo.
Le funzioni virtuali per la gestione dello stato delle componenti di Pdnet da
implementare per ogni SObject sono le seguenti:

• void supdate(CommBu�er *): memorizza le variabili di stato nel Comm-
bu�er;

• void supdate2(CommBu�er *c): in linea di principio uguale a supdate()
ma di�erisce nel caso che oltre alla memorizzazione nel bu�er deve
essere fatta qualche altra operazione. Viene chiamata quando si deve
ottenere un aggiornamento negli slave.

• void rupdate(CommBu�er *) : ripristina le variabili di stato tramite il
CommBu�er;

• void rupdate2(CommBu�er *c): come rupdate() ma di�erisce nel caso
di operazioni particolari. Viene chiamata per l'aggiornamento dello
stato dell'SObject nel master;

• int isUpdate(): controlla se lo stato viene aggiornanto dopo l'esecuzione
dell'evento. Utilizzata dagli slave per capire quali sono gli SObject
interessati dall'evento eseguito;

• int control(CommBu�er *input): controlla se lo stato dell'SObject è
valido confrontando i dati contenuti nel CommBu�er di input e le sue
variabili;

• void removeInput(CommBu�er *input): rimuove le variabili di input
dal CommBu�er. Questa funzione serve quando avviene il controllo

104

e si capisce che le variabili di un SObject memorizzato in input non
servono per il controllo.

6.4 Performance e valutazioni dell'esperimento

Questo paragrafo presenta le valutazioni sullo scheduler parallelo centraliz-
zato in Pdnet con l'ausilio di un modello di esempio. I risultati sono calcolati
con l'utilizzo di due, tre e quattro LP.
La prima valutazione riguarda la percentuale di eventi parallelizzabili, la di-
mensione media delle code locale e remota, la percentuale di eventi eseguiti
da ogni LP. La seconda valutazione riguarda l'impatto temporale che si ha
nell'esecuzione del modello di esempio con lo scheduler parallelo rispetto al-
l'esecuzione con l'heap scheduler seriale.
In base ai risultati delle simulazioni si traggono delle conclusioni che indicano
quando conviene utilizzare questa tecnica di parallelizzazione e le possibili
ottimizzazioni che possono essere utili per dei casi di studio futuri.

6.4.1 Modello di esempio per l'esperimento

Il modello di esempio implementato per veri�care il funzionamento e le perfor-
mance dello scheduler parallelo centralizzato in Pdnet è descritto in �gura 6.2.
Questo modello è composto da tredici nodi indicizzati come n0, n1.......n12

connessi tramite dei duplex-link. La tabella 6.1 riporta le caratteristiche dei
duplex-link presenti nel modello. I duplex-link sono rappresentati come due
simplex-link con direzioni opposte che hanno le stesse caratteristiche. I campi
della tabella dei link rappresentano rispettivamente i nodi coinvolti nel col-
legamento, la banda dei link, i delay dei link e la dimensione massima delle
code associate ai link.
Le applicazioni eseguite in questa topologia di rete sono di tipo udp e sono
descritte nella tabella 6.2. I campi di questa tabella rappresentano rispetti-
vamente il nodo sorgente e il nodo destinazione dove sono allocati gli Agent
dell'applicazione, la dimensione dei pacchetti gestiti dall'applicazione, l'in-
tervallo di tempo che passa tra l'invio di un pacchetto da parte dell'Agent
mandante e il successivo, il tempo virtuale di start dell'applicazione e il suo
tempo virtuale di stop.
La simulazione è eseguita per un tempo virtuale di 100 secondi.

105

Figura 6.2: Modello di esempio

nodo1 nodo2 bw delay code size
n0 n1 1 Mb 5 ms 100
n1 n2 1 Mb 5 ms 100
n0 n2 2 Mb 5 ms 100
n1 n5 1 Mb 5 ms 100
n0 n6 0.5 Mb 5 ms 100
n0 n7 0.5 Mb 5 ms 100
n1 n8 0.7 Mb 4 ms 100
n5 n9 1 Mb 6 ms 100
n5 n10 1 Mb 6 ms 100
n2 n3 2 Mb 5 ms 100
n3 n12 1.5 Mb 4 ms 100
n3 n11 0.8 Mb 3 ms 100
n3 n4 0.8 Mb 6 ms 100

Tabella 6.1: Link modello di esempio

106

src dst pack size interval start stop
n6 n8 400 B 7 ms 0 s 100 s
n7 n11 200 B 8 ms 0 s 100 s
n9 n12 100 B 1 ms 0 s 100 s
n4 n10 120 B 5 ms 0 s 100 s
n11 n12 200 B 1 ms 0 s 100 s
n10 n7 200 B 4 ms 0 s 100 s

Tabella 6.2: Applicazioni modello di esempio

6.4.2 Bilancio sugli eventi parallelizzabili

Per analizzare gli eventi parallelizzabili per prima cosa si analizza il carico
di lavoro di ogni LP nelle simulazioni e�ettuate. Il carico di lavoro è rapp-
resentato dall'istogramma della �gura 6.3. Le ascisse di questo istogramma

Figura 6.3: Eventi eseguiti dagli LP nel modello di esempio

indicano il numero di LP utilizzati dalla simulazione. Le ordinate indicano
il numero di eventi eseguiti da ogni LP. Un secondo dato da analizzare è il
numero di eventi totale eseguito dalle simulazioni (tabella 6.3). Da questi
risultati la prima cosa che si nota è che l'esecuzione con quattro LP non ha

107

numero LP eventi totali eseguiti
1 1314623
2 1567505
3 2685804
4 2595805

Tabella 6.3: Eventi totali eseguiti dalle simulazioni nel modello di esempio

senso perchè l'ultimo LP esegue un numero minimo di eventi. Gli LP dal
3 in poi sono quasi inutilizzati. Nell'esecuzione con tre LP si nota che l'LP
0 esegue un numero di eventi leggermente inferiore a quello seriale, l'LP 1
un numero di eventi considerevole mentre l'LP 2 un numero di eventi basso.
La somma totale del numero di eventi eseguiti è di molto superiore a quella
seriale. Questo fa presupporre che il numero di eventi che vengono rieseguiti
è molto alto. Nell'esecuzione con due LP si vede che il numero di eventi
eseguiti dai due LP è pressocchè uguale. La somma totale del numero di
eventi eseguiti è di poco superiore a quella seriale. Questo fa presupporre ad
un numero basso di eventi rieseguiti.
Le presuppozioni fatte sopra vengono confermate dall'analisi degli eventi es-
eguiti negli slave che risultano validi (remote positive). Le percentuali de-
scritte in tabella 6.4 ci danno la conferma che l'esecuzione con due LP ha un
fattore di parallelizzazione soddisfacente mentre con più di due LP il fattore
di parallelizzazione non è accettabile. Un'altra osservazione importante è

numero LP % remote positive
2 67.7%
3 2.5%
4 2.5%

Tabella 6.4: Percentuale remote positive nel modello di esempio

quella che indica la lunghezza media delle code (tabella 6.5) in cui EC è la
coda degli eventi da eseguire e CEC la coda degli eventi eseguiti dagli slave
ma non ancora veri�cati dal master.
Il campo della tabella �size EC� rappresenta il numero di eventi medio in

EC durante la simulazione e il campo �size CEC� il numero di eventi medio
in CEC. I valori ci indicano che con due LP mediamente c'è un solo evento
in CEC mentre con più di due LP CEC è molto grande. Questo implica che
con più di due LP se gli eventi sono quasi tutti in CEC la EC ha pochi eventi
e molto spesso nei cicli di routine viene eseguito un solo evento, e in molti

108

numero LP size EC size CEC
2 457 1
3 7 451
4 7 451

Tabella 6.5: Lunghezza media code nel modello di esempio

altri casi solo due. Il risultato del numero di eventi eseguiti da ogni LP nelle
simulazioni ci dà la conferma. Un'altra implicazione è che con un numero di
LP maggiore di due la maggior parte degli eventi elaborati dagli slave ven-
gono eseguiti molto in anticipo e la condizione di validità non è quasi mai
veri�cata.
In conclusione questo algoritmo risulta e�ciente solo se viene eseguito con
due LP.

6.4.3 Impatto temporale sulla simulazione

Dall'analisi fatta sul numero di LP da utilizzare per una simulazione è risul-
tato che con più di due LP l'algoritmo non risulta e�ciente. Di conseguenza
la simulazione per veri�care l'impatto temporale della parallelizzazione è sta-
ta fatta solamente con due LP è il tempo di esecuzione viene confrontato con
il tempo di simulazione dell'heap scheduler seriale.
La macchina utilizzata per la simulazione ha un processore Intel(R) Core(TM)2
CPU T5300 1.73GHz e un 1 Gbyte di ram.
Il tempo di esecuzione per eseguire il modello di esempio con l'utilizzo del-
lo scheduler parallelo centralizzato e di circa 65 volte più alto dal tempo
richiesto per l'esecuzione del modello di esempio con l'heap scheduler seriale.

6.4.4 Considerazioni sui risultati

L'analisi dei risultati ci porta alla conclusione che la tecnica di paralleliz-
zazione implementata in Pdnet produce una percentuale di eventi paralleliz-
zabili soddisfacente solo con due LP. I tempi di esecuzione non sono soddis-
facenti ma si deve tenere conto che ogni evento in Pdnet ha un tempo di
esecuzione basso. Questo implica che i tempi di latenza per lo scambio dei
messaggi sono superiori ai tempi di esecuzione di un singolo evento. Con
l'implementazione di nuove strutture in Pdnet se gli eventi avranno un cos-
to computazionale più alto, in modo che i tempi di latenza per lo scambio
dei messaggi risultino trascurabili rispetto ai tempi di esecuzione dell'evento,
questa tecnica potrà essere utilizzata.

109

Un'ottimizzazione di questa tecnica è quella di far eseguire ad ogni LP un
gruppo di eventi per ogni ciclo. Per la realizzazione di questa ottimizzazione
il master deve trovare le dipendenze che gli eventi hanno tra loro prima del-
l'esecuzione in modo che gli eventi assegnati ad LP diversi siano slegati (non
hanno dipendenze tra loro). Questa ottimizzazione serve a ridurre il numero
di messaggi tra il master e gli slave.
In conclusione l'utilizzo della tecnica di simulazione parallela sperimentata
dipenderà molto dall'evoluzione futura di Pdnet. Questa tecnica può essere
applicata ad altri tipi di simulatori che hanno tempi di esecuzione di un singo-
lo evento elevati oppure in cui sia semplice trovare le dipendenze degli eventi
in anticipo rispetto alla loro esecuzione in modo da applicare l'ottimizzazione
descritta prima.

110

Capitolo 7

Conclusioni

Nel campo della ricerca le sperimentazioni possono avere dei costi elevati per
la realizzazione degli ambienti che servono per gli esperimenti. I simulatori
sono nati con lo scopo di creare virtualmente gli ambienti necessari per gli
esperimenti e diminuirne i costi. La ricerca nel campo delle network utilizza
i simulatori di rete multiprotocollo per analizzare il comportamento di nuovi
protocolli applicazioni o sistemi, per convalidare il comportamento di sistemi
già esistenti e stimarne le performance. L'utilizzo delle simulazioni è molto
utile per avere una panoramica chiara sul funzionamento dei sistemi prima
della loro reale implementazione.
Le simulazioni e�ettuate nei laboratori di ricerca molte volte hanno un costo
computazionale elevato che comporta un lento svolgimento dell'analisi dei
dati. L'idea è quella di diminuire drasticamente i tempi di simulazione ap-
plicando ai simulatori delle tecniche di schedulazione parallela che sfruttano
la potenza di calcolo dei moderni sistemi multiprocessore.
Per studiare il funzionamento dei simulatori si è preso come riferimento ns
che utilizza degli scheduler seriali di tipo DES con meccanismo event-driven.
La creazione di scheduler paralleli in ns è risultata complicata (in alcuni casi
addirittura impossibile) per via della sua struttura. A tal proposito è na-
to Pdnet, un simulatore di reti simile ad Ns ma strutturato in modo che
l'implementazione di scheduler paralleli risulti semplice. In questa versione
del simulatore sono state implementate solo le strutture basilari di una rete
perchè lo scopo dell'esperimento è quello di testare uno scheduler parallelo
in esso.
Lo scheduler parallelo implementato in Pdnet utilizza una tecnica di par-
allelizzazione centralizzata in cui un LP (Local Process) master gestisce i
meccanismi per la parallelizzazione degli eventi. Il master ha una lista di
eventi da eseguire ordinata in base al tempo virtuale di esecuzione e il suo
compito è quello di dividere gli eventi negli LP coinvolti nella simulazione

111

parallela in modo che un gruppo di eventi venga eseguito nello stesso mo-
mento. Ogni LP slave dopo l'esecuzione dell'evento restituisce il risultato al
master che ne veri�ca la validità. Più eventi validi si veri�cano migliore è
il fattore di parallelizzazione. L'analisi delle performance ci porta alla con-
clusione che la tecnica di parallelizzazione utilizzata in Pdnet presenta un
buon fattore di parallelizzazione quando viene eseguita con due LP. I tempi
di esecuzione non sono soddisfacenti ma si deve tenere conto che ogni evento
in Pdnet ha un tempo di esecuzione basso. Questo implica che i tempi di
latenza per lo scambio dei messaggi sono superiori ai tempi di esecuzione
di un singolo evento. Con l'implementazione di nuove strutture in Pdnet se
gli eventi avranno un costo computazionale più alto, in modo che i tempi di
latenza per lo scambio dei messaggi risultino trascurabili rispetto ai tempi di
esecuzione dell'evento, questa tecnica potrà essere utilizzata.
Un'ottimizzazione di questa tecnica è quella di far eseguire ad ogni LP un
gruppo di eventi per ogni ciclo. Per la realizzazione di questa ottimizzazione
il master deve trovare le dipendenze che gli eventi hanno tra loro prima del-
l'esecuzione in modo che gli eventi assegnati ad LP diversi siano slegati (non
hanno dipendenze tra loro). Questa ottimizzazione serve a ridurre il numero
di messaggi tra il master e gli slave. Questo può essere un caso di studio
futuro.
Altri casi di studio possono essere le tecniche descritte nel capitolo 3 visto
che la struttura di Pdnet ne permette una facile implementazione.
Per utilizzare concretamente Pdnet nell'ambito della ricerca si devono trovare
tecniche di parallelizzazione che hanno una velocità di esecuzione più bas-
sa rispetto a quella seriale, si devono creare le strutture per svariati tipi
di network (seguendo le rigide regole di implementazione) e si deve creare
un'interfaccia per l'iterazione con l'utente (gra�ca o tramite linguaggi di
script).

112

Bibliogra�a

[1] Wikipedia enciclopedia libera http://www.wikipedia.org

[2] IBM rs/6000 SP:Pratical MPI Programming Agosto 1999

[3] A.Udaya Shankar Discrete-event-simulation Departement of computer
scienze University of Marylan. Gennaio 1991

[4] Ns Manual. UC Berkelay,LBL,USC/ISI,and Xeseros PARK. Kevin Fall,
Kannan Varhadan. 28 febbraio 2008.

[5] Performance Evalutation of Conservative Algorithms in Parallel Sim-
ulation Language Rajive L. Bagrodia - Mineo Takai - Vikas
Jha

[6] Asynchronous Parallel Discrete Event Simulation. Yi-Bing Lin - Paul A.
Fishwick.

[7] Tenembaum Reti di Calcolatori 4 edizione Vrije Universiteit Amsterdam,
Olanda.

[8] T.H. Cormen, C.E. Leiserson, R.L. Rivest Introduzione agli Algoritmi

[9] Fujimoto R.M Time Warp on a Shared Memory Multiproces-
sor.Transaction of the society for computer simulation,1989.

[10] Fujimoto R.M Parallel Discrete Event Simulation.

A

